
HPE Express Containers with Docker
Enterprise Edition on HPE SimpliVity

Deployment Guide

http://www.hpe.com

Deployment Guide

Contents
Executive Summary ... 5
Solution overview ... 5

New in this release ... 5
Solution configuration ... 6
High availability ... 7
Sizing considerations ... 7
Disaster Recovery ... 9
Security ... 9

Solution components .. 10
Hardware ... 10
Software ... 10
Application software ... 11

Preparing the environment ... 11
Verify prerequisites .. 12
Enable vSphere High Availability (HA) ... 12
Install vSphere Docker Volume Service driver on all ESXi hosts .. 13
Create the Ansible node .. 13
Create the Red Hat Linux template.. 14

Configuring the solution components .. 15
Ansible configuration ... 15
Editing the inventory.. 16
VMware configuration ... 18
HPE SimpliVity configuration ... 18
HPE SimpliVity backup configuration .. 20
Networking configuration .. 20
Environment configuration ... 21
Docker configuration .. 21
Orchestrator configuration ... 22
Kubernetes configuration .. 22
Protecting sensitive information .. 23
Inventory group variables .. 24

Overview of the playbooks .. 25
Core components .. 25
Optional components .. 25
Backup and restore playbooks .. 25
Convenience playbooks ... 26
Convenience scripts .. 26

http://www.hpe.com

Deployment Guide

Deploying the core components .. 26
Provisioning RHEL VMs .. 26
Provisioning load balancers for UCP and DTR... 26
Installing Docker UCP and DTR on RHEL VMs ... 28
Deploying RHEL workers ... 28
HPE SimpliVity backup playbooks .. 29

Post deployment .. 29
Installing kubectl .. 29
Installing the client bundle .. 30
Installing Helm ... 31
Post-deploy validation .. 32
UCP metrics in Prometheus ... 38

Configuring storage ... 40
Deploying the NFS provisioner for Kubernetes ... 40
Manually testing the NFS provisioner .. 41
Validating the NFS provisioner using WordPress and MySQL .. 43

Deploying Windows workers ... 50
Create the Windows Template .. 50
Playbooks for adding Windows workers .. 51
Windows configuration ... 52
Windows operating system and Docker EE .. 53

Deploying Sysdig monitoring .. 54
Monitoring with Sysdig ... 54
Playbooks for installing Sysdig on RHEL .. 55
Sysdig configuration ... 55
Registering for Sysdig trial .. 56
Deploying Sysdig monitoring on Kubernetes .. 58
Deploying Sysdig monitoring on Docker Swarm .. 59

Deploying Splunk ... 60
Monitoring with Splunk .. 60
Playbooks for installing Splunk ... 62
Splunk configuration... 62
Accessing Splunk UI .. 65
Redeploying Splunk demo .. 67

Deploying Prometheus and Grafana on Kubernetes .. 68
Monitoring Kubernetes with Prometheus and Grafana ... 68
Playbooks for installing Prometheus and Grafana on Kubernetes .. 68
Prometheus UI ... 70
Node Exporter .. 72
cAdvisor ... 73
Grafana UI .. 73

http://www.hpe.com

Deployment Guide

Deploying Prometheus and Grafana on Docker swarm ... 76
Monitoring with Prometheus and Grafana ... 76
Playbooks for installing Prometheus and Grafana on Docker swarm ... 77
Prometheus and Grafana configuration ... 77
Accessing Grafana UI ... 77

Backup and restore .. 79
Backup and restore UCP and DTR .. 79
HPE SimpliVity backups .. 87

Solution lifecycle management.. 95
HPE SimpliVity environment .. 95
vSphere Docker Volume Service Plug-in ... 96
Red Hat Enterprise Linux operating system .. 96
Docker EE Environment .. 97
Monitoring Tools .. 97

Summary .. 97
Appendix A: Bill of materials .. 98

Software Licenses ... 98
Appendix B: Using customer supplied certificates for UCP and DTR ... 99

Generating and testing certificates ... 99
Verify your certificates ... 101

Appendix C: Enabling SSL between the universal forwarders and the Splunk indexers using your certificates .. 102
Limitations .. 102
Prerequisites ... 102
Before you deploy .. 103
Hybrid environment Linux / Windows .. 103

Appendix D: How to check that certs were deployed correctly ... 104
Resources and additional links ... 106

http://www.hpe.com

Technical White Paper Page 5

Executive Summary
HPE Express Containers with Docker Enterprise Edition on HPE SimpliVity is a complete solution from Hewlett Packard Enterprise that includes
all the hardware, software, professional services, and support you need to deploy a Containers-as-a-Service (CaaS) platform, allowing you to get
up and running quickly and efficiently. The solution takes HPE SimpliVity infrastructure and combines it with Docker’s enterprise-grade container
platform and popular open source tools, along with deployment and advisory services from HPE Pointnext.

HPE Express Containers with Docker Enterprise Edition on HPE SimpliVity is ideal for customers migrating legacy applications to containers,
transitioning to a container DevOps development model or needing a hybrid environment to support container and non-containerized
applications on a common VM platform. This Reference Configuration provides a solution for IT operations, addressing the need for a
production-ready environment that is easy to deploy and manage.

This release supports Kubernetes 1.11 via Docker Enterprise Edition (EE) 2.1, which is the only platform that manages and secures applications
on Kubernetes in multi-Linux, multi-OS and multi-cloud customer environments. This document describes the best practices for deploying and
operating HPE Enterprise Containers as a Service with Docker Enterprise Edition (EE). It shows how to automate the provisioning of the
environment using a set of Ansible playbooks. It also outlines a set of manual steps to harden, secure and audit the overall status of the system.

Target Audience: This document is primarily aimed at technical individuals working in the operations side of the software pipeline, such as
infrastructure architects, system administrators and infrastructure engineers, but anybody with an interest in automating the provisioning of
virtual servers and containers may find this document useful.

Assumptions: The present document assumes a minimum understanding in concepts such as virtualization and containerization and also some
knowledge around Linux®, Microsoft Windows® and VMware® technologies.

Solution overview
The HPE Express Containers with Docker Enterprise Edition on HPE SimpliVity solution consists of a set of Ansible playbooks that run on top of
a VMware virtualization platform on HPE SimpliVity hardware. The solution allows you to configure a flexible OS environment (with both RHEL
and Windows workers) providing built-in high availability (HA), container monitoring and security, and backup and restore functionality.

Figure 1. Solution overview

Figure 1 provides an overview of the steps used to deploy the solution. Deploying your hardware and HPE SimpliVity is specific to your
environment and is not covered here. This document shows you how to:

• Prepare the VM templates

• Create the Ansible host

• Configure the Ansible parameters

• Run the Ansible playbooks

Once you are up and running, you should regularly back up the system using the scripts provided as part of this solution.

New in this release
Version 2.1 of the solution provides support for Kubernetes 1.11 via Docker EE 2.1. It is recommended that you set the DTR version to 2.6.4
(released 2019-03-28) to avoid a known issue when restoring DTR after backup. New features in this release include:

• Prometheus/Grafana on Kubernetes: The playbooks now set up a full monitoring stack for the deployed Kubernetes infrastructure using
Prometheus Operator. They install kube-state-metrics and node-exporter components, as well as supporting Kubelet and Apiserver metrics.
Sample dashboards for Grafana are installed to help you monitor your Kubernetes infrastructure.

http://www.hpe.com

Deployment Guide Page 6

• Docker UCP metrics for Kubernetes: A separate, standalone Prometheus/Grafana deployment is provided to support visualization of UCP
metrics. This will be integrated into the full stack deployment in a future release.

• Sysdig for Kubernetes: The Sysdig deployment has been updated to use Kubernetes 1.11 RBAC and config maps for sensitive data.

• NFS Provisioner for Kubernetes: The NFS Provisioner has been updated to use Kubernetes 1.11 RBAC.

• WordPress and MySQL using NFS Provisioner: Playbooks are provided to validate the NFS Provisioner, featuring a WordPress and MySQL
deployment with persistent storage.

• kubectl: A convenience playbook is provided to download and install kubectl.

• Client bundle: A convenience playbook is available to download and configure the client bundle from UCP.

• Helm charts: Playbooks for downloading, installing and configuring Helm are provided, with the use of sample charts for validation purposes.

For more details on what is new in this release, see the release notes at https://hewlettpackard.github.io/Docker-SimpliVity/rel-notes/new-
features.html.

Solution configuration
The Ansible playbooks are available to download at https://github.com/HewlettPackard/Docker-SimpliVity. By default, the playbooks are
configured to set up a 3 node environment. This is the minimal starter configuration recommended by HPE and Docker for production.

HPE SimpliVity configuration
The operational environment is comprised of three HPE SimpliVity 380 Gen10 servers. HPE recommends dual socket HPE SimpliVity systems
with at least 14 CPU cores per socket (28 total cores per system) for optimal performance and support during HA failover scenarios. Since the
HPE SimpliVity technology relies on VMware virtualization, the servers are managed using vCenter.

Linux-only VM configuration
• 3 Docker Universal Control Plane (UCP) VM nodes for HA and cluster management

• 3 Docker Trusted Registry (DTR) VM nodes for HA of the container registry

The Docker UCP and DTR nodes are spread across 3 physical nodes, with one on each physical node. An odd number of manager nodes is
recommended to avoid split-brain issues. It is possible to restrict the deployment to 1 UCP and 1 DTR, or to expand to more than 3, but the
recommended minimum for an enterprise production deployment is 3 UCPs and 3 DTRs.

• 3 Docker Linux worker VM nodes for container workloads - Kubernetes or Docker swarm or a mix

The Docker worker nodes will be co-located with the UCP and DTR nodes in a 3 physical node deployment. Where more than 3 physical
nodes are available, the worker nodes will typically be separated onto the extra nodes. It is possible to specify that more than one worker node
is deployed per physical node but this decision will depend on the requirements of your applications.

• 1 Docker UCP load balancer VM to ensure access to UCP in the event of a node failure

• 1 Docker DTR load balancer VM to ensure access to DTR in the event of a node failure

By default, two load balancers are deployed to increase availability of UCP and DTR and these are placed on separate physical nodes. Load
balancing for applications running on worker nodes can achieved by using the playbooks to deploy additional load balancers, or by manually
configuring the existing two to support your applications in addition to supporting UCP and DTR.

• 1 Logging server VM for central logging

• 1 NFS server VM for storage of Docker DTR images

With the addition of the NFS and logging VMs, a total of 13 VMs are created for the default Linux-only deployment. In addition to these VMs, the
playbooks also set up the Docker persistent storage plug-in from VMware. The vSphere Docker volume plug-in facilitates the storage of data in a
shared datastore that can be accessed from any machine in the cluster.

Hybrid VM configuration (Windows and Linux)
The hybrid deployment will typically add 3 Windows worker nodes to the above configuration, co-located with the Linux workers.

• 3 Docker swarm Windows worker VM nodes for container workloads (optional)

http://www.hpe.com
https://hewlettpackard.github.io/Docker-SimpliVity/rel-notes/new-features.html
https://hewlettpackard.github.io/Docker-SimpliVity/rel-notes/new-features.html
https://github.com/HewlettPackard/Docker-SimpliVity

Deployment Guide Page 7

Note
Some of the application software supported by this configuration does not currently run on Windows, for example, the Sysdig Software Agent
(see the section Monitoring with Sysdig).

High availability
Uptime is paramount for businesses implementing Docker containers in business critical environments. The HPE Express Containers with Docker
Enterprise Edition on HPE SimpliVity solution offers various levels of high availability (HA) to support continuous availability. The Docker EE
system components run on multiple manager nodes in the cluster. The management plane continues to operate even in the event of a manager
node failure. Application containers can be protected through the use of services running on top of swarm. The swarm orchestrator works to
maintain the number of containers declared as part of the service. The Ansible playbooks can be modified to fit your environment and your high
availability (HA) needs.

Load Balancers
This solution also deploys load balancers in the system to help with container traffic management. There are two load balancer VMs – the UCP
load balancer and DTR load balancer. The playbooks can be configured to deploy one or more worker load balancers depending on the
requirements of your applications. A typical load balancer architecture for applications running on Docker EE is shown in Figure 2. The playbooks
now support load balancers based on VRRP, using HAproxy and keepalived. The solution can be deployed using these loadbalancers, or
external load balancers, or no load balancers or the legacy version of standalone load balancers. For more information on HAproxy, see
http://www.haproxy.com/solutions/high-availability/.

Figure 2. Load balancer architecture

Sizing considerations
A node is a machine in the cluster (virtual or physical) with Docker Engine running on it. There are two types of nodes: managers and workers.
UCP will run on the manager nodes. Although DTR runs on a worker node, Docker does not recommend running other application containers on
them. To decide what size the node should be in terms of CPU, RAM, and storage resources, consider the following:

http://www.hpe.com
http://www.haproxy.com/solutions/high-availability/

Deployment Guide Page 8

 All nodes should at least fulfil the minimal requirements, for UCP 3.0, 8GB of RAM and 4GB of storage. For production systems, 16GB of RAM
is recommended for manager nodes. More detailed requirements are in the Docker EE UCP documentation at
https://docs.docker.com/ee/ucp/admin/install/system-requirements/.

 UCP controller nodes should be provided with more than the minimal requirements, but won’t need much more if nothing else runs on them.

 Ideally, worker node size will vary based on your workloads so it is impossible to define a universal standard size.

 Other considerations like target density (average number of containers per node), whether one standard node type or several are preferred,
and other operational considerations might also influence sizing.

If possible, node size should be determined by experimentation and testing actual workloads; and they should be refined iteratively. A good
starting point is to select a standard or default machine type for all nodes in the environment. If your standard machine type provides more
resources than the UCP controller nodes need, it makes sense to have a smaller node size for these. Whatever the starting choice, it is important
to monitor resource usage and cost to improve the model.

For this solution, the following tables describe sizing configurations, assuming 3 Linux workers and 3 Windows workers. The vCPU allocations are
described in Table 1.

Table 1. vCPU

vCPUs node01 node02 node03

ucp1 4

ucp2 4

ucp3 4

dtr1 2

dtr2 2

dtr3 2

worker1 4

worker2 4

worker3 4

win-worker1 4

win-worker2 4

win-worker3 4

lb1 2

lb2 2

nfs 2

logger 2

Total vCPU per node 16 18 16

Note
In the case of one ESX host failure, 2 nodes are enough to accommodate the amount of vCPU required.

http://www.hpe.com
https://docs.docker.com/ee/ucp/admin/install/system-requirements/

Deployment Guide Page 9

The memory allocation for this solution (3 Linux workers and 3 Windows workers), is described in Table 2.

Table 2. Memory allocation

RAM (GB) node01 node02 node03

ucp1 16

ucp2 16

ucp3 16

dtr1 16

dtr2 16

dtr3 16

worker1 64

worker2 64

worker3 64

win-worker1 64

win-worker2 64

win-worker3 64

lb1 4

lb2 4

nfs 4

logger 4

Total RAM required (per node) 164 168 164

Available RAM 384 384 384

Note
In the case of one ESX host failure, the two surviving hosts can accommodate the amount of RAM required for all VMs.

Disaster Recovery
Recovery Time Objective (RTO) refers to the time that it takes to recover your data and applications while Recovery Point Objective (RPO) refers
to the point in time you can recover to, in the event of a disaster. In essence, RPO tells you how often you will need to make new backups.

In order to protect your installation from disasters, you need to take regular backups and transfer the backups to a safe location. This solution
provides a range of convenience scripts and Ansible playbooks to help automate the backup of UCP, DTR, your swarm and your Docker volumes.
See the section Backup and restore for best practices, procedures and utilities for implementing disaster recovery.

Security
The Docker Reference architecture for Securing Docker EE and Security Best Practices is available at
https://success.docker.com/article/Docker_Reference_Architecture-_Securing_Docker_EE_and_Security_Best_Practices

In addition to having all logs centralized in a single place and the image scanning feature enabled for the DTR nodes, there are other guidelines
that should be followed in order to keep your Docker environment as secure as possible. The HPE Reference Configuration paper for securing
Docker on HPE Hardware places a special emphasis on securing Docker in DevOps environments and covers best practices in terms of Docker
security. The document can be found at http://h20195.www2.hpe.com/V2/GetDocument.aspx?docname=a00020437enw.

In addition, the Sysdig product also provides a strong level of container security and monitoring (see the section Monitoring with Sysdig).

http://www.hpe.com
https://success.docker.com/article/Docker_Reference_Architecture-_Securing_Docker_EE_and_Security_Best_Practices
http://h20195.www2.hpe.com/V2/GetDocument.aspx?docname=a00020437enw

Deployment Guide Page 10

Solution components
This section describes the various components that were utilized in this Reference Configuration.

Hardware
HPE SimpliVity is an enterprise-grade hyper-converged platform uniting best-in-class data services with the world's best-selling server.

About HPE SimpliVity
Rapid proliferation of applications and the increasing cost of maintaining legacy infrastructure causes significant IT challenges for many
organizations. With HPE SimpliVity, you can streamline and enable IT operations at a fraction of the cost of traditional and public cloud solutions,
by combining your IT infrastructure and advanced data services into a single, integrated solution. HPE SimpliVity is a powerful, simple, and
efficient hyperconverged platform that joins best-in-class data services with the world’s best-selling server and offers the industry’s most
complete guarantee.

More information about HPE SimpliVity can be found at: https://www.hpe.com/us/en/integrated-systems/simplivity.html

Software
The software components used in this Reference Configuration are listed in Table 3 and Table 4.

Table 3. Third-party software

Component Version

Ansible 2.7

Docker EE 2.1 with Docker EE Engine 18.09 (tested with UCP 3.1.4 and DTR 2.6.4)

Red Hat Enterprise Linux 7.6

Microsoft Windows Server 2016

VMware ESXi 6.5.0 and vCenter 6.5.0

Table 4. HPE Software

Component Version

HPE SimpliVity OmniStack 3.7.6

About Ansible
Ansible is an open-source automation engine that automates software provisioning, configuration management and application deployment.

As with most configuration management software, Ansible has two types of servers: the controlling machine and the nodes. A single controlling
machine orchestrates the nodes by deploying modules to the Linux nodes over SSH. The modules are temporarily stored on the nodes and
communicate with the controlling machine through a JSON protocol over the standard output. When Ansible is not managing nodes, it does not
consume resources because no daemons or programs are executing for Ansible in the background. Ansible uses one or more inventory files to
manage the configuration of the multiple nodes in the system.

When deploying Windows nodes in a hybrid deployment, the Ansible playbooks make use of the Python pywinrm module which carries out
actions via the Windows remote manager.

More information about Ansible can be found at http://docs.ansible.com.

About Docker Enterprise Edition
Docker Enterprise Edition (EE) is the leading enterprise-ready container platform for IT that manages and secures diverse applications across
disparate infrastructure, both on-premises and in the cloud. Docker EE provides integrated container management and security from
development to production. Enterprise-ready capabilities like multi-architecture orchestration and secure software supply chain give IT teams
the ability to manage and secure containers without breaking the developer experience.

http://www.hpe.com
https://www.hpe.com/us/en/integrated-systems/simplivity.html
http://docs.ansible.com/

Deployment Guide Page 11

Docker EE provides:

• Integrated management of all application resources from a single web admin UI.

• Frictionless deployment of applications and Compose files to production in a few clicks.

• Multi-tenant system with granular role-based access control (RBAC) and LDAP/AD integration.

• Self-healing application deployment with the ability to apply rolling application updates.

• End-to-end security model with secrets management, image signing and image security scanning.

More information about Docker Enterprise Edition can be found at https://www.docker.com/enterprise-edition.

Application software
A number of different logging and monitoring solutions are supported by this solution:

• Splunk

• Sysdig

• Prometheus and Grafana

The application software components used in this Reference Configuration are listed in Table 5.

Table 5. Application software

Component Version

Splunk 7.1.2

Sysdig latest

Prometheus V2.3.2

Grafana 5.2.3

Monitoring with Splunk and Sysdig
The solution can be configured to use either Splunk or Sysdig or to enable both simultaneously. While there is some overlap in the functionality
provided by these tools, they are ultimately complimentary in what they offer. Splunk aggregates logging and tracing for a wide variety of
sources and provides a clean, high-level dashboard for all your enterprise systems. Sysdig, on the other hand, has been engineered from the
ground up to focus on containerized environments and includes both monitoring and security features, with built-in understanding of the
different workloads running on your cloud.

More information on configuring Splunk and running the relevant playbooks can be found in the section Deploying Splunk.

For more information on configuring Sysdig and running the relevant playbooks, see the section Deploying Sysdig monitoring.

Monitoring with Prometheus and Grafana
The solution can be configured to enable the use of Prometheus and Grafana for monitoring. In this setup, there is no need for native installs and
all the required monitoring software runs in containers, deployed as either services or stacks.

The solution supports two separate monitoring stacks, with one running on Kubernetes and the other using Docker swarm.

For more information on running Prometheus and Grafana on Kubernetes, see section Monitoring Kubernetes with Prometheus and Grafana.

For more information on running Prometheus and Grafana on Docker swarm, see section Deploying Prometheus and Grafana on Docker swarm.

Preparing the environment
This section describes in detail how to prepare the environment that was outlined in the architecture section. The following high level steps are
required:

http://www.hpe.com
https://www.docker.com/enterprise-edition

Deployment Guide Page 12

• Verify prerequisites

• Enable vSphere High Availability (HA)

• Install vSphere Docker Volume Service driver on all ESXi hosts

• Create the Ansible node

• Create the Red Hat Linux Template and configure the yum repositories

• Create the Windows Template (optional)

• Finalize the template

Verify prerequisites
Before you start deployment, you must assemble the information required to assign values for each and every variable used by the playbooks.
The variables are fully documented in the section Configuring the solution components. A brief overview of the information required is presented
in Table 6.

Table 6. Summary of information required

Component Details

Virtual Infrastructure The FQDN of your vCenter server and the name of the Datacenter. You will also need administrator credentials in order to create templates
and spin up virtual machines.

HPE SimpliVity Cluster The name of the SimpliVity cluster and the names of the members of this cluster as they appear in vCenter. You will also need to know the
name of the SimpliVity datastore where you want to land the various virtual machines. You may have to create this datastore if you just
installed your SimpliVity cluster. In addition, you will need the IP addresses of the OmniStack virtual machines. Finally you will need
credentials with admin capabilities for using the OmniStack API. These credentials are typically the same as your vCenter admin credentials.

L3 Network requirements You will need one IP address for each and every VM configured in the Ansible inventory (see the section Configuring the solution
components). The recommended minimal deployment (Linux-only) configures 13 virtual machines so you would need to allocate 13 IP
addresses to use this example inventory. If you have a hybrid environment with Windows workers, you will need to increase the allocation.
Note that the Ansible playbooks do not support DHCP so you need static IP addresses. All the IPs should be in the same subnet. You will
also have to specify the size of the subnet (for example /22 or /24) and the L3 gateway for this subnet.

DNS You will need to know the IP addresses of your DNS server. In addition, all the VMs you configure in the inventory must have their names
registered in DNS prior to deployment. In addition, you will need to know the domain name to use for configuring the virtual machines (such
as example.com)

NTP Services You need time services configured in your environment. The deployed solution uses certificates that are time-sensitive. You will need to
specify the IP addresses of your time servers (NTP).

RHEL Subscription A RHEL subscription is required to pull extra packages that are not on the DVD.

Docker Prerequisites You will need a URL for the official Docker EE software download and a license file. Refer to the Docker documentation to learn more about
this URL and the licensing requirements at: https://docs.docker.com/engine/installation/linux/docker-ee/rhel/ in the section entitled “Docker
EE repository URL”

Proxy The playbooks pull the Docker packages from the Internet. If your environment accesses the Internet through a proxy, you will need the
details of the proxy including the fully qualified domain name and the port number.

Enable vSphere High Availability (HA)
You must enable vSphere High Availability (HA) to support virtual machine failover during a HA event such as a host failure. Sufficient CPU and
memory resources must be reserved across the system so that all VMs on the affected host(s) can fail over to remaining available hosts in the
system. You configure an Admission Control Policy (ACP) to specify the percentage CPU and memory to reserve on all the hosts in the cluster to
support HA functionality.

Note
You should not use the default Admission Control Policy. Instead, you should calculate the memory and CPU requirements that are specific to
your environment.

http://www.hpe.com
https://docs.docker.com/engine/installation/linux/docker-ee/rhel/

Deployment Guide Page 13

Install vSphere Docker Volume Service driver on all ESXi hosts
vSphere Docker Volume Service technology enables stateful containers to access the storage volumes. Setting this up is a one-off manual step. In
order to be able to use Docker volumes using the vSphere driver, you must first install the latest release of the vSphere Docker Volume Service
(vDVS) driver, which is available as a vSphere Installation Bundle (VIB). To perform this operation, log in to each of the ESXi hosts and then
download and install the latest release of vDVS driver.

esxcli software vib install -v /tmp/vmware-esx-vmdkops-<version>.vib --no-sig-check

More information on how to download and install the driver can be found at http://vmware.github.io/vsphere-storage-for-
docker/documentation/install.html.The version of the driver tested in this configuration is 0.21.2.

Create the Ansible node
The Ansible node will act as the driver to automate the provisioning of the environment and it is essential that it is properly installed.

 Create a Virtual Machine and install your preferred OS (in this example, and for the sake of simplicity, RHEL7 will be used). The rest of the
instructions assume that, if you use a different OS, you understand the possible differences in syntax for the provided commands. If you use
RHEL 7, select Infrastructure Server as the base environment and the Guests Agents add-on during the installation.

 Log in to the root account and create an SSH key pair. Do not protect the key with a passphrase (unless you want to use ssh-agent).

ssh-keygen

 Configure the following yum repositories, rhel-7-server-rpms and rhel-7-server-extras-rpms as explained in the section
Configure the yum repositories. The "extras" repo can be enabled as follows:

subscription-manager repos --enable=rhel-7-server-extras-rpms

 Configure the EPEL repository. For more information, see: http://fedoraproject.org/wiki/EPEL. Note that yum-config-manager comes with
the Infrastructure Server base environment. If you did not select this environment, you will have to install the yum-utils package.

rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
yum-config-manager --enable rhel-7-server-extras-rpms

 Install Ansible 2.7 or higher.

yum install ansible

 Install the following packages which are a mandatory requirement for the playbooks to function as expected. (Update pip if requested).

yum install python-pyvmomi python-netaddr python2-jmespath python-pip gcc python-devel openssl-devel git
pip install --upgrade pip
pip install cryptography
pip install pysphere
pip install --ignore-installed "pywinrm>=0.2.2"

Configure the yum repositories
The Red Hat packages required during the deployment of the solution come from two repositories: rhel-7-server-rpms and rhel-7-
server-extras-rpms. The first repository is on the Red Hat DVD but the second is not. There are two options, with both options requiring a
Red Hat Network account. Logon to your VM template using SSH with the credentials you configured for the root account and then implement
one of the two options below:

Option 1: Use Red Hat subscription manager to register your system. This is the easiest way and will automatically give you access to the official
Red Hat repositories.

 Use the subscription-manager register command as follows.

subscription-manager register --auto-attach

 If you are behind a proxy, you must configure this before running the above command to register.

subscription-manager config --server.proxy_hostname=<proxy IP> --server.proxy_port=<proxy port>

http://www.hpe.com
http://vmware.github.io/vsphere-storage-for-docker/documentation/install.html
http://vmware.github.io/vsphere-storage-for-docker/documentation/install.html
http://fedoraproject.org/wiki/EPEL

Deployment Guide Page 14

 Verify that you don't have the issue described here: https://access.redhat.com/solutions/3317671 by entering the following command.

yum repolist

 If you have the issue, fix it with the following command

subscription-manager repos --disable=rhel-7-server-rt-beta-rpms

The playbooks will later automatically enable the extras repository on the VMs that need it.

Option 2: Use an internal repository. Instead of pulling the packages from Red Hat, you can create copies of the required repositories on a
dedicated node. You can then configure the package manager to pull the packages from the dedicated node. Your
/etc/yum.repos.d/redhat.repo could look as follows.

[RHEL7-Server]
name=Red Hat Enterprise Linux $releasever - $basearch
baseurl=http://yourserver.example.com/rhel-7-server-rpms/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

[RHEL7-Server-extras]
name=Red Hat Enterprise Linux Extra pkg $releasever - $basearch
baseurl=http://yourserver.example.com/rhel-7-server-extras-rpms/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

To see how you can create a local mirror of the Red Hat repositories and how to share them, check the Red Hat documentation at
https://access.redhat.com/solutions/23016, https://access.redhat.com/solutions/265523 and at https://access.redhat.com/solutions/7227.

Create the Red Hat Linux template
To create the Red Hat Linux VM template that you will use as the base for all your nodes, you first create a Virtual Machine with the OS installed
and then convert the Virtual Machine to a VM Template. The VM Template is created as lean as possible, with any additional software installs
and/or system configuration performed subsequently using Ansible.

As the creation of the template is a one-off task, this procedure has not been automated. The steps required to manually create a VM template
are outlined below.

Log in to vCenter and create a new Virtual Machine with the following characteristics:

– Guest OS Family: Linux, Guest OS Version: Red Hat Enterprise Linux (64-bit)

– Hard Disk size: 50GB, (Thin provisioning)

– A single network controller connected to the network or VLAN of your choice. All VMs will connect to this same network.

– Optionally you can remove the floppy drive

Install Red Hat Enterprise 7:

 Select a language which is supported by Docker

 For the software selection, choose Infrastructure Server as the base environment and add the Guest Agents from the lists of add-ons
available for this environment. The Infrastructure Server environment is selected here versus the Minimal Install because Customization of
Linux guest operating systems requires that Perl is installed in the Linux guest operating system.

 Configure the network settings so that you can later access the VM using SSH. Specify an IP address for the network interface, a default
gateway, DNS settings and possibly any HTTP/HTTPS proxies that apply in your environment.

http://www.hpe.com
https://access.redhat.com/solutions/3317671
https://access.redhat.com/solutions/23016
https://access.redhat.com/solutions/265523
https://access.redhat.com/solutions/7227

Deployment Guide Page 15

 Specify a password for the root account and optionally created an admin user.

 Wait for the installation to finish and for the VM to reboot.

Update packages
Use yum update to install the latest packages, configuring a proxy if required.

subscription-manager config --server.proxy_hostname=<proxy IP> --server.proxy_port=<proxy port>
subscription-manager register --auto-attach

subscription-manager repos \
--enable=rhel-7-server-rpms \
--enable=rhel-7-server-extras-rpms

yum update
subscription-manager unregister

Finalize the template
Log in to the root account on the Ansible box and copy the SSH public key to the VM Template. This will allow your Ansible node to SSH to all
the Virtual Machines created from the VM Template without the need for a password.

ssh-copy-id root@<IP of your VM_Template>

Perform the following steps on the VM Template to finalize its creation:

1. Clean up the template by running the following commands from the Virtual Machine Console:

rm /etc/ssh/ssh_host_*
nmcli con del ens192
logrotate -f /etc/logrotate.conf
rm /var/log/*-201?*
history -c

2. Shutdown the VM

shutdown -h now

3. Turn the VM into a template by right-clicking on your VM and selecting Template -> Convert to Template. This will create a new
template visible under VM Templates in Folders, ready for future use.

Note
In both the Ansible node and the VM Template, you might need to configure the network so one node can reach the other. Instructions for this
step have been omitted since it is a basic step and could vary depending on the user’s environment.

Configuring the solution components
Once you have prepared your environment, you need to download the solution software and edit the configuration variables to match your
setup.

Ansible configuration
 On the Ansible node, retrieve the latest version of the playbooks using Git.

git clone https://github.com/HewlettPackard/Docker-SimpliVity.git

 Change to the directory that you just cloned:

cd ~/Docker-SimpliVity

http://www.hpe.com

Deployment Guide Page 16

Note
All subsequent file names are relative to the Docker-SimpliVity directory. For example vm_hosts is located in ~/Docker-SimpliVity/
and group_vars/vars corresponds to ~/Docker-SimpliVity/groups_vars/vars.

You now need to prepare the configuration to match your own environment, prior to deploying Docker EE and the rest of the nodes. To do so,
you will need to modify a number of files including:

• site.yml, the main entry point for the playbooks.

• vm_hosts, the inventory file.

You also need to create and populate a number of files:

• group_vars/vars, the group variables file.

• group_vars/vault, containing sensitive information that needs to be protected.

• group_vars/backups, containing backup-related variables.

For the latter group, a set of sample files has been provided to help you get started:

• group_vars/vars.sample, a sample group variables file.

• group_vars/vault.sample, a sample vault file.

• group_vars/backups.sample, a sample backup configuration file.

The file group_vars/win_worker.yml supports advanced configuration of Windows remote management and in general should not require
modification.

You should work from the root account for the configuration steps and also later on when you run the playbooks.

Editing the inventory
The inventory is the file named vm_hosts in the ~/Docker-SimpliVity directory. You need to edit this file to describe the configuration
you want to deploy.

The nodes inside the inventory are organized in groups. The groups are defined by brackets and the group names are static so they must not be
changed. Other fields (hostnames, specifications, IP addresses…) are edited to match your setup. The groups are as follows:

• [ucp_main]: A group containing one single node which will be the main UCP node and swarm leader. Do not add more than one node under
this group.

• [ucp]: A group containing all the UCP nodes, including the main UCP node. Typically you should have either 3 or 5 nodes under this group.

• [dtr_main]: A group containing one single node which will be the first DTR node to be installed. Do not add more than one node under this
group.

• [dtr]: A group containing all the DTR nodes, including the main DTR node. Typically you should have either 3 or 5 nodes under this group.

• [worker]: A group containing all the Linux worker nodes.

• [win_worker]: A group containing all the Windows worker nodes.

• [nfs]: A group containing one single node which will be the NFS node. Do not add more than one node under this group.

• [logger]: A group containing one single node which will be the logger node. Do not add more than one node under this group.

• [local]: A group containing the local Ansible host. It contains an entry that should not be modified.

If you are deploying the new active-active load balancers, using floating IPs managed by keepalived:

• [loadbalancer]: A group containing the UCP, DTR and any worker load balancers you are deploying.

http://www.hpe.com

Deployment Guide Page 17

If you are using the legacy, standalone load balancers:

• [ucp_lb]: A group containing one single node which will be the load balancer for the UCP nodes. Do not add more than one node under this
group.

• [dtr_lb]: A group containing one single node which will be the load balancer for the DTR nodes. Do not add more than one node under this
group.

• [worker_lb]: A group containing one single node which will be the load balancer for the worker nodes. Do not add more than one node
under this group.

• [lbs]: A group containing all the load balancers. This group will have 3 nodes, also defined individually in the three groups above.

There are also a few special groups:

• [docker:children]: A group of groups including all the nodes where Docker will be installed.

• [vms:children]: A group of groups including all the Virtual Machines involved, with the exception of the local host.

Finally, you will find some variables defined for each group:

• [vms:vars]: A set of variables defined for all VMs. Currently only the size of the boot disk is defined here.

• [ucp:vars]: A set of variables defined for all nodes in the [ucp] group.

• [dtr:vars]: A set of variables defined for all nodes in the [dtr] group.

• [worker:vars]: A set of variables defined for all nodes in the [worker] group.

• [win_worker:vars]: A set of variables defined for all nodes in the [win_worker] group.

• [loadbalancer:vars]: A set of variables defined for all nodes in the [loadbalancer] group.

• [lbs:vars]: A set of variables defined for all nodes in the [lbs] group.

• [nfs:vars]: A set of variables defined for all nodes in the [nfs] group.

• [logger:vars]: A set of variables defined for all nodes in the [logger] group.

If you wish to configure your nodes with different specifications to the ones defined by the group, it is possible to declare the same variables at
the node level, overriding the group value. For instance, you could have one of your Linux workers with higher specifications by setting:

[worker]
worker01 ip_addr='10.0.0.10/16' esxi_host='esxi1.domain.local'
worker02 ip_addr='10.0.0.11/16' esxi_host='esxi1.domain.local'
worker03 ip_addr='10.0.0.12/16' esxi_host='esxi1.domain.local' cpus='16' ram'32768'

[worker:vars]
cpus='4' ram='16384' disk2_size='200'

In the example above, the worker03 node would have 4 times more CPU and double the RAM compared to the rest of the worker nodes.

The different variables you can use are described in Table 7 below. They are all mandatory unless otherwise specified.

Table 7. Variables

Variable Scope Description

ip_addr Node IP address in CIDR format to be given to a node

esxi_host Node ESXi host where the node will be deployed. If the cluster is configured with DRS, this option will be overridden

cpus Node/Group Number of CPUs to assign to a VM or a group of VMs

ram Node/Group Amount of RAM in MB to assign to a VM or a group of VMs

http://www.hpe.com

Deployment Guide Page 18

Variable Scope Description

disk2_size Node/Group Size of the second disk in GB to attach to a VM or a group of VMs. This variable is only mandatory on Docker nodes (UCP,
DTR, worker) and NFS node. It is not required for the logger node or the load balancers.

node_policy Node/Group HPE SimpliVity backup policy to assign to a VM or a group of VMs. The name has to match one of the backup policies
defined in the group_vars/vars file described in the section HPE SimpliVity backup configuration.

VMware configuration
All VMware-related variables are mandatory and are described in Table 8.

Table 8. VMware variables

Variable File Description

vcenter_hostname group_vars/vars IP or hostname of the vCenter appliance

vcenter_username group_vars/vars Username to log in to the vCenter appliance. It might include a domain, for example,
'administrator@vsphere.local'.

vcenter_password group_vars/vault The password corresponding to the vcenter_username user above.

vcenter_validate_certs group_vars/vars ‘no’

datacenter group_vars/vars Name of the datacenter where the environment will be provisioned

vm_username group_vars/vars Username to log into the VMs. It needs to match the one from the VM Template, so unless you have created a user,
you must use 'root'.

vm_password group_vars/vault The password for the vm_username user above.

vm_template group_vars/vars Name of the RHEL VM Template to be use. Note that this is the name from a vCenter perspective, not the hostname.

folder_name group_vars/vars vCenter folder to deploy the VMs. If you do not wish to deploy in a particular folder, the value should be /. Note: If you
want to deploy in a specific folder, you need to create this folder in the inventory of the selected datacenter before
starting the deployment.

datastores group_vars/vars List of datastores to be used, in list format, i.e. ['Datastore1','Datastore2'...]. The datastores must exist before you
run the playbooks. Note that each datastore should be mounted on each of the ESXi hosts.

Please note that from a HPE SimpliVity perspective, it is a best practice to use only one Datastore. Using more than
one will not provide any advantages in terms of reliability and will add additional complexity.

disk2 group_vars/vars UNIX® name of the second disk for the Docker VMs. Typically /dev/sdb

disk2_part group_vars/vars UNIX name of the partition of the second disk for the Docker VMs. Typically /dev/sdb1

vsphere_plugin_version group_vars/vars Version of the vSphere plugin for Docker. The default is 0.21.2 which is the latest version at the time of writing this
document. The version of the plugin should match the version of the vSphere Installation Bundle (VIB) that you
installed on the ESXi servers.

vm_portgroup group_vars/vars Used by the playbook create_vms.yml, this variable is used to specify the portgroup connected to the network
that connects all the VMs. There is currently only one network.

It is recommended that the template which is used as the base for all deployed VMs specifies a network adapter but it
is not required. If a network adapter is specified, you should not attach this adapter to a standard switch if the
portgroup designated by vm_portgroup is connected to a distributed vSwitch. In addition, you should make sure
that the adapter specifies Connect At Power On.

HPE SimpliVity configuration
Variables related to your HPE SimpliVity deployment are mandatory and are described in Table 9.

Table 9. SimpliVity variables

Variable File Description

simplivity_username group_vars/vars Username to log in to the SimpliVity Omnistack appliances. It might include a domain, for example,
administrator@vsphere.local. Note: The corresponding password is stored in the
variable named simplivity_password.

http://www.hpe.com
mailto:administrator@vsphere.local

Deployment Guide Page 19

simplivity_password group_vars/vault The password for the simplivity_username user.

omnistack_ovc group_vars/vars List of Omnistack hosts to be used, in list format, i.e. [‘omni1.local’,’onmi2.local’...] If your
OmniStack virtual machines do not have their names registered in DNS, you can use their IP
addresses.

VM placement and number of HPE SimpliVity servers in the cluster
The placement of the various VMs deployed by the playbooks depends on whether DRS is enabled or not:

 If DRS is not enabled, the placement of the VMs is specified in the Ansible inventory file vm_hosts

 If DRS is enabled, the placement of the VMs is outside the control of the playbooks

The playbooks have only been tested with three nodes in the ESX cluster, but the following sections provide guidance on how to use more than
three nodes.

Using more than three nodes when DRS is not enabled
The default vm_hosts file in the solution GitHub repository corresponds to a deployment on a 3-node HPE SimpliVity cluster. For each Ansible
host in the inventory, you use the esxi_hosts variable to specify on which ESX hosts the VM should be placed. The following code extract
shows 3 UCP VMs distributed across the three members of the cluster. This is the recommended placement as you do not want one node to host
two UCP VMs since failure of that node would result in the cluster losing quorum.

[ucp]
hpe-ucp01 ip_addr='10.10.174.112/22' esxi_host='simply01.am2.cloudra.local'
hpe-ucp02 ip_addr='10.10.174.113/22' esxi_host='simply02.am2.cloudra.local'
hpe-ucp03 ip_addr='10.10.174.114/22' esxi_host='simply03.am2.cloudra.local'

In the above example, the first UCP VM will be placed on the ESX host named simply01.am2.cloudra.local. Note that the value for
esxi_host is the name of the ESX host in the vCenter inventory.

The default vm_hosts inventory configures three Docker worker nodes and distributes them across the three ESX hosts:

[worker]
hpe-worker01 ip_addr='10.10.174.122/22' esxi_host='simply01.am2.cloudra.local'
hpe-worker02 ip_addr='10.10.174.123/22' esxi_host='simply02.am2.cloudra.local'
hpe-worker03 ip_addr='10.10.174.124/22' esxi_host='simply03.am2.cloudra.local'

If you have more than three ESX hosts in your cluster, you can add an additional worker node as follows:

[worker]
hpe-worker01 ip_addr='10.10.174.122/22' esxi_host='simply01.am2.cloudra.local'
hpe-worker02 ip_addr='10.10.174.123/22' esxi_host='simply02.am2.cloudra.local'
hpe-worker03 ip_addr='10.10.174.124/22' esxi_host='simply03.am2.cloudra.local'
hpe-worker04 ip_addr='10.10.174.150/22' esxi_host='simply04.am2.cloudra.local'

You can also distribute the infrastructure VMs across fours nodes rather than across the default nodes. For example, the default placement for
the NFS server VM is as follows:

[nfs]
hpe-nfs ip_addr='10.10.174.121/22' esxi_host='simply03.am2.cloudra.local'

Instead, you can change the placement NFS server VM, leveraging a fourth ESX node:

[nfs]
hpe-nfs ip_addr='10.10.174.121/22' esxi_host='simply04.am2.cloudra.local'

When you specify the placement of the VM, you should ensure that you follow these placement guidelines:

http://www.hpe.com

Deployment Guide Page 20

• Do not place two UCP VMs on the same node. If the node fails, the UCP cluster will lose quorum and the service will go down.

• Do not place two DTR replicas (VMs) on the same node. Once again, the cluster will lose quorum if that node fails.

Note
The OmniStack software maintains two replicas on two different hosts for each VM. As a result, when a VM is scheduled on an ESX server that
does not have local access to one of the replicas, the VM will report the warning “SimpliVity VM Data Access Not Optimized”. You can safely
ignore this warning.

Using more than three nodes when DRS is enabled
When DRS is enabled, it controls the placement of the VMs and as a result, the placement you have specified in the vm_hosts inventory is
ignored. Instead, you use DRS rules to make sure that the UCP and DTR VMs are distributed across three nodes for the reasons explained earlier.

Warning
If you do not specify DRS rules to determine the placement, DRS will automatically move the VMs that report the “SimpliVity VM Data Access Not
Optimized” warning to a node with a replica of the VM which may break the earlier placement guideline.

HPE SimpliVity backup configuration
Variables related to HPE SimpliVity backups are described in Table 10.

Table 10. HPE SimpliVity backup variables

Variable Description

backup_policies List of dictionaries containing the different backup policies to be used along with the scheduling information. Any number
of backup policies can be created and they need to match the node_policy variables defined in the inventory. Times are
indicated in minutes. All month calculations use a 30-day month. All year calculations use a 365-day year. The format is as
follows:

backup_policies:

 - name: daily'

 days: 'All'

 start_time: '11:30'

 frequency: '1440'

 retention: '43200'

 - name: 'hourly'

 days: 'All'

 start_time: '00:00'

 frequency: '60'

 retention: '2880'

dummy_vm_prefix In order to be able to back up the Docker volumes, a number of “dummy” VMs need to spin up. This variable will set a
recognizable prefix for them.

docker_volumes_policy Backup policy to use for the Docker Volumes.

svt_cleanup Used by the playbook playbooks/clean_all.yml to determine if the dummy VMs should be deleted when the VMs
are removed.

Networking configuration
All network-related variables are mandatory and are described in Table 11.

http://www.hpe.com

Deployment Guide Page 21

Table 11. Network variables

Variable File Description

nic_name group_vars/vars Name of the device, for RHEL this is typically ens192 and it is recommended to leave it as is.

gateway group_vars/vars IP address of the gateway to be used

dns group_vars/vars List of DNS servers to be used, in list format, i.e. ['10.10.173.1','10.10.173.2'...]

domain_name group_vars/vars Domain name for your Virtual Machines

ntp_servers group_vars/vars List of NTP servers to be used, in list format, i.e. ['1.2.3.4','0.us.pool.net.org'...]

Environment configuration
All Environment-related variables are described in Table 12 below.

Table 12. Environment variables

Variable File Description

env group_vars/vars Dictionary containing all environment variables. It contains three entries described below. Please leave the proxy related settings
empty if not required:

http_proxy: HTTP proxy URL, such as 'http://15.184.4.2:8080'. This variable defines the HTTP proxy URL if your
environment is behind a proxy.

https_proxy: HTTPS proxy URL, such as 'http://15.184.4.2:8080'. This variable defines the HTTPS proxy URL if your
environment is behind a proxy.

no_proxy: List of hostnames or IPs that don't require proxy, such as
'localhost,127.0.0.1,.cloudra.local,10.10.174.'

Docker configuration
All Docker-related variables are mandatory and are described in Table 13.

Table 13. Docker variables

Variable File Description

docker_ee_url group_vars/vault Note: This is a private link to your Docker EE subscription. The value for docker_ee_url is the URL documented at
the following address: https://docs.docker.com/engine/installation/linux/docker-ee/rhel/.

docker_ee_reponame group_vars/vars For Docker EE 2.1, this variable must be set to the value stable-18.09

docker_ee_version group_vars/vars Specify an exact version of Docker EE to download from the repo defined by docker_ee_reponame

rhel_version group_vars/vars For the Docker installation, this sets the version of your RHEL OS, such as 7.6. The playbooks were tested with RHEL
7.6.

dtr_version group_vars/vars Version of the Docker DTR you wish to install. You can use a numeric version or latest for the most recent one. The
playbooks were tested with 2.6.4.

ucp_version group_vars/vars Version of the Docker UCP you wish to install. You can use a numeric version or latest for the most recent one. The
playbooks were tested with UCP 3.1.4.

images_folder group_vars/vars Directory in the NFS server that will be mounted in the DTR nodes and that will host your Docker images.

license_file group_vars/vars Full path to your Docker EE license file on your Ansible host. The license file is available from the Docker Store

ucp_username group_vars/vars Username of the administrator user for UCP and DTR, typically admin.

ucp_password group_vars/vault The password for the ucp_username account.

docker_storage_driver group_vars/vars Storage driver for Docker nodes. Accepted values are overlay2 (the default) and devicemapper. For RHEL 7.6,
only overlay2 is supported.

To see how to use customer-supplied certificates with UCP and DTR, see Appendix B.

http://www.hpe.com
http://0.us.pool.net.org/
https://docs.docker.com/engine/installation/linux/docker-ee/rhel/

Deployment Guide Page 22

Orchestrator configuration
The variable orchestrator in the [worker] group is used to specify if a worker node should be assigned to the Kubernetes orchestrator
(orchestrator: 'kubernetes') or to the swarm orchestrator (orchestrator: 'swarm'). In general, you should only change the
orchestrator for worker nodes.

Note
Docker supports a third type, mixed, that enables workloads to be scheduled by both Kubernetes and Docker swarm on the same node. Mixing
orchestrator types on the same node is not recommended for production deployments because of the likelihood of resource contention. As a
result, these playbooks do not support the mixed type.

The following example shows how to set Kubernetes as the default orchestrator for worker nodes, and how to override the default to use Docker
swarm on one specific node instead.

WORKER
[worker]
hpe-worker01 ip_addr='10.60.59.21/16' esxi_host='esxi-hpe-1.cloudra.local'
hpe-worker02 ip_addr='10.60.59.22/16' esxi_host='esxi-hpe-2.cloudra.local'
hpe-worker03 ip_addr='10.60.59.23/16' esxi_host='esxi-hpe-3.cloudra.local' orchestrator=swarm

[worker:vars]
cpus='4'
ram='65536'
disk2_size='500'
orchestrator=kubernetes

Note
The playbooks do not change Docker's default orchestrator type which is swarm. Instead, the inventory is used to configure worker nodes for
Kubernetes workloads or swarm workloads as explained above. If you want to change the default orchestrator type, use the method explained in
the Docker documentation at https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#set-the-default-orchestrator-type-for-
new-nodes.

It is possible to manually change the orchestrator type for a node. When you do this, existing workloads are evicted and they are not migrated
automatically to the new orchestrator. If you want the workloads to be scheduled by the new orchestrator, you must migrate them manually.
More information is available in the Docker documentation at https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#what-
happens-when-you-change-a-nodes-orchestrator.

Kubernetes configuration
The current playbooks support the deployment of UCP 3.1.* which deploys Kubernetes version 1.11.*. This version of the playbooks will not work
with a version of UCP that is lower than 3. If you wish to deploy using UCP 2.*, you will need to download a previous release of the playbooks,
which is available on the GitHub site.

The preceding section Orchestrator configuration explains how to assign a worker node to the Kubernetes orchestrator. This section covers
specific Kubernetes configuration, including how to set the pod CIDR and how to configure Kubernetes Persistent Volumes.

Pod CIDR
The variable k8s_pod_cidr is specified in group_vars/vars and configures a custom range of IP addresses to be used by pods. The
specific range that you use should be dedicated to the cluster.

The default value is 192.168.0.0/16. To set an alternative value, use the variable as shown in the example:

 k8s_pod_cidr: 192.168.128.0/17

http://www.hpe.com
https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#set-the-default-orchestrator-type-for-new-nodes
https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#set-the-default-orchestrator-type-for-new-nodes
https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#what-happens-when-you-change-a-nodes-orchestrator
https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#what-happens-when-you-change-a-nodes-orchestrator

Deployment Guide Page 23

Kubernetes Persistent Volume configuration
Variables related to the configuration of Kubernetes Persistent Volumes are shown in Table 14.

Table 14. Kubernetes Persistent Volume variables

Variable File Description

nfs_provisioner_namespace group_vars/vars The Kubernetes namespace, for example, nfsstorage

nfs_provisioner_role group_vars/vars Name of the role to create, for example, nfs-provisioner-runner.

nfs_provisioner_serviceaccount group_vars/vars The Kubernetes service account name to use for RBAC purposes, for example, nfs-
provisioner

nfs_provisioner_name group_vars/vars Name of the provisioner, for example, hpe.com/nfs

nfs_provisioner_storage_class_name group_vars/vars Name of the storage class to create, for example, nfs

nfs_provisioner_server_ip group_vars/vars IP address (or FQDN) of your external NFS server, for example, hpe2-nfs.cloudra.local

nfs_provisioner_server_share group_vars/vars Name of the NFS share where all the persistent volume data will be stored, for example, /k8s

Related playbooks
The playbook playbooks/nfs-provisioner.yml is used to enable a dynamic NFS provisioner which can be used to automatically create
and allocate Kubernetes persistent volumes. The backend storage is provided by an NFS backend. This playbook is run from the Ansible box
after downloading a UCP client bundle for the admin account and sourcing the downloaded env.sh file. For more information on using this
playbook, see the section Deploying the NFS provisioner for Kubernetes.

Protecting sensitive information
A vault file is used to protect any sensitive variables that should not appear in clear text in your group_vars/vars file. The vault file will be
encrypted and will require a password to be entered before it can be read or updated.

A sample vault file is provided named group_vars/vault.sample that you can use as a model for your vault file. To create a vault, you
create a new file called group_vars/vault and add entries similar to:

docker_ee_url: 'your_url_here'
vcenter_password: 'xxxx'
vm_password: 'xxxx'
simplivity_password: 'xxxx'
ucp_password: 'zzzz'
win_password: 'yourpass'
sysdig_access_key: 'enter_sysdig_access_key'
rhn_orgid: 'YourOrgId'
rhn_key: 'YourActivationKey'
redhat_user: 'YourUserName'
redhat_pass: 'YourPassword'
#password for the splunk universal forwarder. Must meet password complexity requirement
splunk_uf_password: 'YourPa$$word12'
backup_passphrase: 'Enteryourpassphrase'

rhn_orgid and rhn_key are the credentials needed to subscribe the virtual machines with Red Hat Customer Portal. If these are not supplied,
the playbooks will fallback to using the redhat_user/redhat_pass combination instead. For more information regarding activation keys, see
the following URL: https://access.redhat.com/articles/1378093

To encrypt the vault you need to run the following command:

ansible-vault encrypt group_vars/vault

You will be prompted for a password that will decrypt the vault when required. You can update the values in your vault by running:

http://www.hpe.com
https://access.redhat.com/articles/1378093

Deployment Guide Page 24

ansible-vault edit group_vars/vault

In order for Ansible to be able to read the vault, you need to specify a file where the password is stored, for instance, in a file called
.vault_pass. Once the file is created, take the following precautions to avoid illegitimate access to this file:

• Change the permissions so only root can read it using # chmod 600 .vault_pass

• Add the file to your .gitignore file if you are using a Git repository to manage your playbooks.

Inventory group variables
Additional configuration files for each group in the inventory are available, including group_vars/vms.yml, group_vars/ucp.yml,
group_vars/dtr.yml, group_vars/worker.yml and group_vars/nfs.yml.

These group files facilitate more sophisticated settings, such as additional drives and additional network interfaces. For example, here is the
group_vars/nfs.yml file.

networks:
 - name: '{{ vm_portgroup }}'
 ip: "{{ ip_addr | ipaddr('address') }}"
 netmask: "{{ ip_addr | ipaddr('netmask') }}"
 gateway: "{{ gateway }}"

disks_specs:
 - size_gb: '{{ disk1_size }}'
 type: thin
 datastore: "{{ datastores | random }}"
 - size_gb: '{{ disk2_size }}'
 type: thin
 datastore: "{{ datastores | random }}"
 - size_gb: 10
 type: thin
 datastore: "{{ datastores | random }}"

In this example, the size of the first two drives is specified using the values of the variables disk1_size and disk2_size that are declared in
the group_vars/vars file. This maintains compatibility with vm_hosts inventories from the previous release of the playbooks. However, it is
possible to provide explicit values, depending on your requirements, for the individual UCP, DTR, worker or NFS VMs. For example, you may want
to increase the size of the second disk for the NFS VM as this is used to store the DTR images, so the default value of 500GB may not be
sufficient to meet your needs.

In this release, support has been added for configuring a third drive that can be used to hold Kubernetes persistent volume data. The default size
(10GB) is set low as the use of the NFS VM for storing persistent volume data is only considered suitable for demo purposes and should not be
used in a production environment.

In the following example, the group_vars/nfs.yml has been modified to configure the NFS VM with a 50GB boot disk, a 500GB drive for
DTR images and an 800GB drive for Kubernetes persistent volumes data.

networks:
 - name: '{{ vm_portgroup }}'
 ip: "{{ ip_addr | ipaddr('address') }}"
 netmask: "{{ ip_addr | ipaddr('netmask') }}"
 gateway: "{{ gateway }}"

disks_specs:
 - size_gb: 50
 type: thin
 datastore: "{{ datastores | random }}"
 - size_gb: 500

http://www.hpe.com

Deployment Guide Page 25

 type: thin
 datastore: "{{ datastores | random }}"
 - size_gb: 800
 type: thin
 datastore: "{{ datastores | random }}"

Note
The number of drives and the purpose of each drive is determined by the role of the VM and the specific playbooks that use the information. The
first disk is always used as the boot disk, irrespective of VM role, while the purpose of the second or third disk is specific to the role.

Overview of the playbooks
The Ansible playbooks are available to download at https://github.com/HewlettPackard/Docker-SimpliVity. Once you have cloned the repository,
change directory to /root/Docker-SimpliVity.

You can use the playbook site.yml as the day 0 playbook to deploy the solution. It is simply a wrapper around a number of required and
optional playbooks that allow you to configure the deployment to your needs.

To start a deployment, use the following command:

ansible-playbook -i vm_hosts site.yml --vault-password-file .vault_pass

The playbooks should run for approximately 35-40 minutes for the default deployment with 3 UCP, 3 DTR and 3 Linux worker nodes
(depending on your server specifications and the size of your environment).

Core components
The playbooks for deploying the core components are described in the following sections:

• Provisioning RHEL VMs

• Provisioning load balancers for UCP and DTR

• Installing Docker UCP and DTR on RHEL VMs

• Deploying RHEL workers

Optional components
The playbooks for deploying optional components are described in the following sections:

• Playbooks for adding Windows workers

• Playbooks for installing Sysdig on RHEL

• Playbooks for installing Splunk

• Playbooks for installing Prometheus and Grafana

Backup and restore playbooks
Best practices and procedures are described in the section Backup and restore. The following playbooks are used to perform backups:

• playbooks/backup_swarm.yml is used to back up the swarm data

• playbooks/backup_ucp.yml is used to back up UCP

• playbooks/backup_dtr_meta.yml is used to back up DTR metadata

• playbooks/backup_dtr_images.yml is used to back up DTR images

The following playbooks are used to restore the system:

http://www.hpe.com
https://github.com/HewlettPackard/Docker-SimpliVity

Deployment Guide Page 26

• playbooks/restore_dtr_images.yml is used to restore DTR images

• playbooks/restore_dtr_metadata.yml is used to restore DTR metadata

• playbooks/restore_ucp.yml is used to restore UCP

Convenience playbooks
• playbooks/clean_all.yml powers off and deletes all VMs in your inventory.

• playbooks/distribute_keys.yml distributes public keys between all nodes, to allow each node to password-less log in to every other
node. As this is not essential and can be regarded as a security risk (a worker node probably should not be able to log in to a UCP node, for
instance), this playbook is not included in site.yml by default.

Convenience scripts
• backup.sh can be used to take a backup of the swarm, UCP, DTR metadata and the DTR images in one go.

• restore_dtr.sh can be used to restore DTR metadata and DTR images.

• scale_worker.sh can be used to scale the worker nodes.

Deploying the core components
At this point, the system is ready to be deployed. Make sure you are logged on as root in your Ansible box and that your current directory is
/root/Docker-SimpliVity

Note
As well as configuring your vars and vault files, you must also provide a backups configuration file in the group_vars folder when running
site.yml. An example file is provided in the repository named backups.sample. Rename it to backups before running the playbooks.
Details on how to configure this file are available in the section Backup and restore.

Provisioning RHEL VMs
The following playbooks are used to provision RHEL VMs:

• playbooks/create_vms.yml will create all the necessary virtual machines for the environment from the VM Template defined in the
vm_template variable. All Linux VMs are now created in one go, regardless of the number of drives they have. This playbook also has the
potential to configure additional network adapters.

• playbooks/config_networking.yml will configure the network settings in all the virtual machines.

• playbooks/resize_syspart.yml resizes the logical volume that holds the / partition of the Linux VMs to use all the space available on
the drive.

• playbooks/config_subscription.yml registers and subscribes all virtual machines to the Red Hat Customer Portal.

• playbooks/config_ntp.yml configures the chrony client package in all virtual machines in order to have a synchronized clock across
the environment. It will use the list of servers specified in the ntp_servers variable in the file group_vars/vars.

Provisioning load balancers for UCP and DTR
The playbook playbooks/loadbalancer.yml is used to deploy load balancers in an active-active configuration to provide highly-
available access to UCP and DTR.

At least two nodes are specified in the [loadbalancer] group in the inventory, along with group variables defining CPU and RAM
requirements. These nodes run keepalived and HAproxy.

[loadbalancer]
hpe-lb1 ip_addr='10.10.174.248/22' esxi_host='simply04.am2.cloudra.local' ucp=true
hpe-lb2 ip_addr='10.10.174.249/22' esxi_host='simply05.am2.cloudra.local' dtr=true

http://www.hpe.com

Deployment Guide Page 27

[loadbalancer:vars]
cpus='2'
ram='4096'
node_policy='hpe-bronze'

The virtual IP for UCP will be handled by hpe-lb1 by default, which will split the traffic across the three UCP VMs hpe-ucp01, hpe-ucp02
and hpe-ucp03. In the case of a failure of hpe-lb1, the virtual IP for UCP will automatically move to the second load balancer node hpe-lb2
which will again distribute the traffic to the UCP VMs.

Similarly, the virtual IP for DTR will be handled by default by the load balancer hpe-lb2, splitting the traffic across the three DTR VMs hpe-
dtr01, hpe-dtr02 and hpe-dtr03. In the case of a failure of hpe-lb2, the virtual IP for DTR will automatically move to the first load
balancer node hpe-lb1 which will again distribute the traffic to the DTR VMs.

To configure the virtual IPs for UCP and DTR, you need to add a loadbalancers dictionary to your group_vars/vars file as shown in the
excerpt below:

loadbalancers:
 ucp:
 public_interface: 'ens192'
 public_vip: '10.60.59.251'
 public_fqdn: hpe-ucpvip.cloudra.local
 virtual_router_id: 54
 dtr:
 public_interface: 'ens192'
 public_vip: '10.60.59.252'
 public_fqdn: hpe-dtrvip.cloudra.local
 virtual_router_id: 55

Warning
If you re-run playbooks/loadbalancer.yml after a configuration change, you may need to subsequently run
playbooks/reconfigure_dtr.yml as the latter playbook configures the virtual IP address for accessing the UCP Single-Sign-On (SSO)
page. If there is no virtual IP or FQDN defined for UCP in the variables file, the playbook will choose the address of the first UCP node in the
[ucp] group. This scenario introduces a single point of failure and should be avoided.

Note
By default, the playbook supports ports 443 and 6443 for UCP and port 433 for DTR. If you deploy Prometheus and Grafana on Docker Swarm,
the Grafana port 3000 will be handled as well.

Note
The playbook playbooks/loadbalancer.yml can be used to create one or more load balancers for applications running on your worker
nodes. However, it is impossible for the playbooks to know what ports to support, so manual configuration of HAproxy and keepalived may be
required. By default, the playbooks support ports 80 and 443 for worker nodes.

Legacy stand-alone load balancers
The playbook playbooks/install_haproxy.yml is used to deploy three separate load balancers, for the UCP, DTR and worker nodes. It is
recommended that you use the HAproxy and keepalived solution documented above instead of this option.

Deploying without load balancers
If you do not want to deploy load balancers when running site.yml, you should comment out any declarations in the inventory and variables
files. This includes any legacy stand-alone load balancers.

http://www.hpe.com

Deployment Guide Page 28

Deploying with your own load balancers
If you are using external load balancers for UCP and DTR, you can configure UCP and DTR to use these external load balancers by specifying
FQDNs in the loadbalancers dictionary in group_vars/vars:

loadbalancers:
 ucp:
 public_fqdn: external-ucpvip.am2.cloudra.local
 dtr:
 public_fqdn: external-dtrvip.am2.cloudra.local

Installing Docker UCP and DTR on RHEL VMs
The following playbooks are used to install Docker UCP and DTR on RHEL VMs.

• playbooks/config_storage_driver.yml prepares drives for local Docker volumes and container images. It also configures Docker
with either the overlay2 storage driver (the default) or the devicemapper storage driver, depending on the value of the
docker_storage_driver variable in group_vars/vars. This playbook was previously called
playbooks/config_docker_lvs.yml in earlier releases of the solution.

• playbooks/install_docker.yml installs Docker along with all of its dependencies.

• playbooks/install_rsyslog.yml installs and configures rsyslog in the logger node and in all Docker nodes. The logger node will be
configured to receive all syslogs on port 514 and the Docker nodes will be configured to send all logs (including container logs) to the
logger node.

• playbooks/docker_post_config.yml performs a variety of tasks to complete the installation of the Docker environment, including
configuration of the HTTP/HTTPS proxies, if any, and installation of the VMware vSphere Storage for Docker volume plugin.

• playbooks/install_nfs_server.yml installs and configures an NFS server on the NFS node.

This playbook has been updated to configure a third drive which is used to hold the data of the persistent volumes created with the NFS
provisioner. The default size for this drive is purposefully kept small because using the NFS VM to store persistent volumes is not
recommended for production use. However, this can be useful for demo purposes.

• playbooks/install_nfs_clients.yml installs the required packages on the DTR nodes to be able to mount an NFS share.

• playbooks/create_main_ucp.yml installs and configures the first Docker UCP instance on the target node defined by the group
ucp_main in the vm_hosts inventory.

• playbooks/scale_ucp.yml installs and configures additional instances of UCP on the target nodes defined by the group ucp in the
vm_hosts inventory, except for the node defined in the group ucp_main.

• playbooks/create_main_dtr.yml installs and configures the first Docker DTR instance on the target node defined by the group
dtr_main in the vm_hosts inventory.

• playbooks/config_scheduler.yml configures the scheduler to prevent regular users (i.e. non-admin users) scheduling containers on
the Docker nodes running instances of UCP and DTR.

• playbooks/scale_dtr.yml installs and configures additional instances (or replicas) of DTR on the target nodes defined by the group
dtr in the vm_hosts inventory, with the exception of the node defined in the group dtr_main.

• playbooks/reconfigure_dtr.yml is used to reconfigure DTR with the FQDN of the UCP Load Balancer and also enables image
scanning.

Deploying RHEL workers
By default, site.yml will automatically deploy any RHEL (and / or Windows) worker nodes that are declared in the inventory.

If you subsequently want additional RHEL worker nodes, add them to the inventory as appropriate and then run the playbooks for Provisioning
RHEL VMs, followed by the specific playbooks for RHEL worker nodes outlined below:

http://www.hpe.com

Deployment Guide Page 29

• playbooks/scale_workers.yml installs and configures additional Linux workers on the target nodes defined by the group worker in
the vm_hosts inventory.

A utility script scale_worker.sh is provided to assist you in adding worker nodes after the initial deployment.

HPE SimpliVity backup playbooks
Two playbooks are provided to support the backup of Docker volumes using HPE SimpliVity functionality. The playbooks are run by default
when using site.yml to deploy the solution.

Configure dummy VMs to backup Docker volumes
The playbook playbooks/config_dummy_vms_for_docker_volumes_backup.yml ensures that you can back up Docker volumes
that have been created using the vSphere plugin (vDVS) in SimpliVity. There is not a straight-forward way to do this, so you need to use a
workaround. Since all Docker volumes are going to be stored in the dockvols folder in the datastore(s), you need to create a ‘dummy’ VM per
datastore. The vmx, vmsd and vmdk files from this VM will have to be inside the dockvols folder, so when these VMs are backed up, the
volumes are backed up as well. Obviously these VMs don’t need to take any resources and you can keep them powered off.

Configure SimpliVity backups
The playbook playbooks/config_simplivity_backups.yml configures the defined backup policies in the group variables file in HPE
SimpliVity and will include all Docker nodes plus the ‘dummy’ VMs created before, so the existing Docker volumes are also taken into account.
The playbook will mainly use the SimpliVity REST API to perform these tasks. A reference to the REST API can be found at
https://developer.hpe.com/platform/hpe-simplivity/home.

Post deployment
The playbooks are intended to be used to deploy a new environment. You should only use them for Day 0 deployment purposes.

The Ansible log is stored in the folder /root/Docker-SimpliVity. If the deployment fails, you may find useful hints in this log. To see how
to check if your certs have been deployed correctly, see Appendix D: How to check that certs were deployed correctly.

Installing kubectl
A convenience playbook is provided to make it easy to install kubectl on the Ansible controller. This playbook uses variables in
group_vars/vars to determine which version to download. The default version specified by the variable kubectl_version in the sample
variables file is 1.11.5. Details of the 1.11 release are available at https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-
1.11.md. In particular, the playbook requires a checksum to be present in the variable kubectl_checksum. The appropriate value can be found
in the details for the specific version of kubectl to be downloaded, in this case for version 1.11.5 of kubernetes-client-linux-
amd64.tar.gz, available at https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.11.md#downloads-for-v1115.

The vars.sample file that ships with this release has the following values:

kubectl_version: "1.11.5"
kubectl_checksum:
"sha512:7028d357f65603398c35b7578793a153248e17c2ad631541a587f4ae13ef93f058db130390eea4820c2fd7707509ed
0eb581cb129790b12680e869829a6fc241"

To run the playbook:

cd ~/Docker-SimpliVity
ansible-playbook -i vm_hosts playbooks/install_kubectl.yml

Test the installation by running the kubectl version command:

kubectl version

Client Version: version.Info{Major:"1", Minor:"11", GitVersion:"v1.11.5",
GitCommit:"753b2dbc622f5cc417845f0ff8a77f539a4213ea", GitTreeState:"clean", BuildDate:"2018-11-
26T14:41:50Z", GoVersion:"go1.10.3", Compiler:"gc", Platform:"linux/amd64"}

The connection to the server localhost:8080 was refused - did you specify the right host or port?

http://www.hpe.com
https://developer.hpe.com/platform/hpe-simplivity/home
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.11.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.11.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.11.md#downloads-for-v1115

Deployment Guide Page 30

The client version is reported correctly. However, kubectl cannot connect to the server until you set up a client bundle - this is described in the
section titled Installing the client bundle.

Manually installing kubectl
You can find the version number for the current stable version of kubectl at https://kubernetes.io/docs/tasks/tools/install-kubectl/. At the time
of writing, the stable version is 1.13.

The following is an example of manually downloading and installing a specific version of kubectl.

version=v1.10.4
wget -O kubectl https://storage.googleapis.com/kubernetes-
release/release/${version}/bin/linux/amd64/kubectl
chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl

kubectl version
Client Version: version.Info{Major:"1", Minor:"10", GitVersion:"v1.10.4",
GitCommit:"5ca598b4ba5abb89bb773071ce452e33fb66339d", GitTreeState:"clean", BuildDate:"2018-06-
06T08:13:03Z", GoVersion:"go1.9.3", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"8+", GitVersion:"v1.8.11-docker-8d637ae",
GitCommit:"8d637aedf46b9c21dde723e29c645b9f27106fa5", GitTreeState:"clean", BuildDate:"2018-04-
26T16:51:21Z", GoVersion:"go1.8.3", Compiler:"gc", Platform:"linux/amd64"}

More details on installing kubectl are available at https://kubernetes.io/docs/tasks/tools/install-kubectl/.

Installing the client bundle
A convenience playbook is provided to install and apply the client bundle on the Ansible controller. To run the playbook:

cd ~/Docker-SimpliVity
ansible-playbook -i vm_hosts playbooks/install_client_bundle.yml --vault-password-file .vault_pass

The client bundle is downloaded to ~/certs.<<ucp_instance>>.<<ucp_username>> where ucp_instance will be specific to the
cluster you are running against, for example, hpe2-ucp01 and the ucp-username is typically admin.

The playbook downloads the client bundle, but does not configure it for use. Change to the download folder and execute eval
"$(<env.sh)"

cd ~/certs.hpe2-ucp01.admin
eval "$(<env.sh)"

Test the configuration by again running the kubectl version command. It should now report the server version as well as the client version:

kubectl version

Client Version: version.Info{Major:"1", Minor:"11", GitVersion:"v1.11.5",
GitCommit:"753b2dbc622f5cc417845f0ff8a77f539a4213ea", GitTreeState:"clean", BuildDate:"2018-11-
26T14:41:50Z", GoVersion:"go1.10.3", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"11+", GitVersion:"v1.11.5-docker-1",
GitCommit:"d512ba512d0de40cd80258f480ff66bf71f2d8a4", GitTreeState:"clean", BuildDate:"2018-12-
03T19:55:14Z", GoVersion:"go1.10.3", Compiler:"gc", Platform:"linux/amd64"}

More information on the client bundle is available at https://docs.docker.com/ee/ucp/user-access/cli/#download-client-certificates-by-using-the-
rest-api.

http://www.hpe.com
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.docker.com/ee/ucp/user-access/cli/#download-client-certificates-by-using-the-rest-api
https://docs.docker.com/ee/ucp/user-access/cli/#download-client-certificates-by-using-the-rest-api

Deployment Guide Page 31

Installing Helm
Prerequisites
• Install the kubectl binary on your Ansible box

• Install the UCP Client bundle for the admin user

• Confirm that you can connect to the cluster by running a test command, for example, kubectl get nodes

Running the playbook
To run the playbook on your Ansible controller:

cd ~/Docker-SimpliVity
ansible-playbook -i vm_hosts playbooks/install_helm.yml --vault-password-file .vault_pass

The playbook relies on the variable helm_version to determine the version of Helm to download. The playbooks have been tested using
version 2.12.3. You must also specify the appropriate checksum for the download in the variable helm_checksum. This value can be
obtained from the downloads page at https://github.com/helm/helm/releases. The vars.sample file that ships with this release contains the
following values:

helm_version: "2.12.3"
helm_checksum: "sha256:3425a1b37954dabdf2ba37d5d8a0bd24a225bb8454a06f12b115c55907809107"

Install sample charts
A number of sample charts are delivered with the solution, for the purposes of demonstration.

Alpine
A simple chart is provided in the ~/Docker-SimpliVity/test/files/helm/alpine directory to run a single pod of Alpine Linux.

The templates/ directory contains a very simple pod resource with a couple of parameters. The values.yaml file contains the default
values for the alpine-pod.yaml template.

cd ~/Docker-SimpliVity
helm install test/files/helm/alpine

The output shows that a single pod was deployed.

NAME: old-mole
LAST DEPLOYED: Fri Feb 8 17:27:35 2019
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1/Pod
NAME READY STATUS RESTARTS AGE
old-mole-alpine 1/1 Running 0 0s

Nginx
An example chart is provided in the ~/Docker-SimpliVity/test/files/helm/nginx directory to install a simple nginx server
according to the following pattern:

• A ConfigMap is used to store the files the server will serve. (templates/configmap.yaml)

• A Deployment is used to create a Replica Set of nginx pods. (templates/deployment.yaml)

• A Service is used to create a gateway to the pods running in the replica set (templates/service.yaml)

The values.yaml exposes a few of the configuration options in the charts.

cd ~/Docker-SimpliVity
helm install test/files/helm/nginx

http://www.hpe.com
https://github.com/helm/helm/releases

Deployment Guide Page 32

The output shows a service being created with a NodePort at 34567. This value comes from the values.yml file in the folder.

NAME: worn-olm
LAST DEPLOYED: Fri Feb 8 16:23:21 2019
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
worn-olm-nginx 1 1 1 1 14s

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
worn-olm-nginx-7d648f7dfb-gg2jk 1/1 Running 0 14s
worn-olm-nginx-vhwc7 0/1 Completed 0 14s

==> v1/ConfigMap
NAME DATA AGE
worn-olm-nginx 2 14s

==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
worn-olm-nginx NodePort 10.96.30.222 <none> 80:34567/TCP 14s

Helm also allows you to easily delete installed releases. List the installed releases to find the name of the release you wish to delete.

helm list
NAME REVISION UPDATED STATUS CHART APP
VERSION NAMESPACE
worn-olm 1 Fri Feb 8 16:23:21 2019 DEPLOYED nginx-0.1.0
default

Use the helm delete command to remove the named release.

helm delete worn-olm
release "worn-olm" deleted

Post-deploy validation
Many sample Kubernetes applications are available at https://kubernetes.io/docs/tutorials/. This section details how to deploy the stateless
guestbook application with Redis as documented at https://kubernetes.io/docs/tutorials/stateless-application/guestbook/.

When deploying applications, you must be aware that Kubernetes version 1.11 shipped with Docker 2.1. If you are testing examples that are
designed to work with a newer (or older) version of Kubernetes, you may have to make changes in some places to the configuration files.

Prerequisites
• Install the kubectl binary on your Ansible box

• Install the UCP Client bundle for the admin user

• Confirm that you can connect to the cluster by running a test command, for example, kubectl get nodes

Kubernetes guestbook example with Redis
The playbook for the Kubernetes example guestbook is based on the example taken from the GitHub repo at
https://github.com/kubernetes/examples.

cd ~/Docker-Simplivity
ansible-playbook -i vm_hosts test/playbooks/k8s-guestbook.yml --vault-password-file .vault_pass

http://www.hpe.com
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/
https://github.com/kubernetes/examples

Deployment Guide Page 33

You can run the playbook directly, but it can be informative to walk through the individual files to see what is going on under the covers.

Quickstart
cd ~/Docker-Simplivity/test/files/k8s-examples/guestbook
kubectl apply -f redis-master-deployment.yaml
kubectl apply -f redis-master-service.yaml
kubectl apply -f redis-slave-deployment.yaml
kubectl apply -f redis-slave-service.yaml
kubectl apply -f frontend-deployment.yaml
kubectl apply -f frontend-service.yaml
kubectl get svc frontend

Details
Change to the directory containing the guestbook YAML files.

cd ~/Docker-Simplivity/test/files/k8s-examples/guestbook

The manifest file redis-master-deployment.yaml, included below, specifies a deployment controller that runs a single replica Redis
master pod.

cat redis-master-deployment.yaml

apiVersion: apps/v1 # for k8s versions before 1.9.0 use apps/v1beta2 and before 1.8.0 use extensions/v1beta1
kind: Deployment
metadata:
 name: redis-master
spec:
 selector:
 matchLabels:
 app: redis
 role: master
 tier: backend
 replicas: 1
 template:
 metadata:
 labels:
 app: redis
 role: master
 tier: backend
 spec:
 containers:
 - name: master
 image: k8s.gcr.io/redis:e2e # or just image: redis
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 6379

Apply the Redis master deployment from the redis-master-deployment.yaml file:

kubectl apply -f redis-master-deployment.yaml

Query the list of Pods to verify that the Redis master pod is running.

kubectl get pods | grep redis
redis-master-57657796fc-psvhc 1/1 Running 0 32s

http://www.hpe.com

Deployment Guide Page 34

Use the kubectl logs command to view the logs from the Redis master pod:

kubectl logs -f redis-master-57657796fc-psvhc

 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 2.8.19 (00000000/0) 64 bit
 .-`` .-```. ```\/ _.,_ ''-._
 (' , .-` | `,) Running in stand alone mode
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
 | `-._ `._ / _.-' | PID: 1
 `-._ `-._ `-./ _.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' | http://redis.io
 `-._ `-._`-.__.-'_.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' |
 `-._ `-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

[1] 07 Feb 15:04:32.189 # Server started, Redis version 2.8.19
[1] 07 Feb 15:04:32.189 # WARNING you have Transparent Huge Pages (THP) support enabled in your
kernel. This will create latency and memory usage issues with Redis. To fix this issue run the command
'echo never > /sys/kernel/mm/transparent_hugepage/enabled' as root, and add it to your /etc/rc.local
in order to retain the setting after a reboot. Redis must be restarted after THP is disabled.
[1] 07 Feb 15:04:32.189 # WARNING: The TCP backlog setting of 511 cannot be enforced because
/proc/sys/net/core/somaxconn is set to the lower value of 128.
[1] 07 Feb 15:04:32.190 * The server is now ready to accept connections on port 6379

The guestbook application needs to communicate with the Redis master to write its data. You need to apply a service to proxy the traffic to the
Redis master pod. A service defines a policy to access the pods.

cat redis-master-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: redis-master
 labels:
 app: redis
 role: master
 tier: backend
spec:
 ports:
 - port: 6379
 targetPort: 6379
 selector:
 app: redis
 role: master
 tier: backend

Apply the Redis master service from the redis-master-service.yaml file:

http://www.hpe.com

Deployment Guide Page 35

kubectl apply -f redis-master-service.yaml
service "redis-master" created

Query the list of services to verify that the Redis master service is running.

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
redis-master ClusterIP 10.96.240.18 <none> 6379/TCP 1m

Although the Redis master is a single pod, you can make it highly available to meet traffic demands by adding replica Redis slaves.

cat redis-slave-deployment.yaml

apiVersion: apps/v1 # for k8s versions before 1.9.0 use apps/v1beta2 and before 1.8.0 use
extensions/v1beta1
kind: Deployment
metadata:
 name: redis-slave
spec:
 selector:
 matchLabels:
 app: redis
 role: slave
 tier: backend
 replicas: 2
 template:
 metadata:
 labels:
 app: redis
 role: slave
 tier: backend
 spec:
 containers:
 - name: slave
 image: gcr.io/google_samples/gb-redisslave:v1
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # If your cluster config does not include a dns service, then to
 # instead access an environment variable to find the master
 # service's host, comment out the 'value: dns' line above, and
 # uncomment the line below:
 # value: env
 ports:
 - containerPort: 6379

Create the Redis slaves from the redis-slave-deployment.yaml file.

kubectl apply -f redis-slave-deployment.yaml
deployment.apps "redis-slave" created

http://www.hpe.com

Deployment Guide Page 36

Query the list of Pods to verify that the Redis slave pods are running.

kubectl get pods | grep redis
redis-master-57657796fc-psvhc 1/1 Running 0 7m
redis-slave-5cb5956459-bqqlg 1/1 Running 0 19s
redis-slave-5cb5956459-gql5x 1/1 Running 0 19s

The guestbook application needs to communicate to Redis slaves to read data. To make the Redis slaves discoverable, you need to set up a
service that provides transparent load balancing to the set of pods.

cat redis-slave-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: redis-slave
 labels:
 app: redis
 role: slave
 tier: backend
spec:
 ports:
 - port: 6379
 selector:
 app: redis
 role: slave
 tier: backend

Deploy the Redis slave service from the redis-slave-service.yaml file.

kubectl apply -f redis-slave-service.yaml
service "redis-slave" created

Query the list of services to verify that the Redis slave service is running.

kubectl get services | grep redis
redis-master ClusterIP 10.96.240.18 <none> 6379/TCP 4m
redis-slave ClusterIP 10.96.200.85 <none> 6379/TCP 22s

The guestbook application has a web frontend written in PHP serving the HTTP requests. It is configured to connect to the redis-master
service for write requests and the redis-slave service for read requests.

cat frontend-deployment.yaml
apiVersion: apps/v1 # for k8s versions before 1.9.0 use apps/v1beta2 and before 1.8.0 use
extensions/v1beta1
kind: Deployment
metadata:
 name: frontend
spec:
 selector:
 matchLabels:
 app: guestbook
 tier: frontend
 replicas: 3
 template:
 metadata:
 labels:

http://www.hpe.com

Deployment Guide Page 37

 app: guestbook
 tier: frontend
 spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # If your cluster config does not include a dns service, then to
 # instead access environment variables to find service host
 # info, comment out the 'value: dns' line above, and uncomment the
 # line below:
 # value: env
 ports:
 - containerPort: 80

Create the frontend deployment using the frontend-deployment.yaml file.

kubectl apply -f frontend-deployment.yaml
deployment.apps "frontend" created

Query the list of pods to verify that the three frontend replicas are running.

kubectl get pods -l app=guestbook -l tier=frontend
NAME READY STATUS RESTARTS AGE
frontend-7f5cd767dc-28j6b 1/1 Running 0 23s
frontend-7f5cd767dc-mqcbv 1/1 Running 0 23s
frontend-7f5cd767dc-v6lwc 1/1 Running 0 23s

If you want guests to be able to access your guestbook, you must configure the frontend service to be externally visible, so a client can request
the service from outside the container cluster.

cat frontend-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: frontend
 labels:
 app: guestbook
 tier: frontend
spec:
 # comment or delete the following line if you want to use a LoadBalancer
 type: NodePort
 # if your cluster supports it, uncomment the following to automatically create
 # an external load-balanced IP for the frontend service.
 # type: LoadBalancer
 ports:
 - port: 80
 selector:

http://www.hpe.com

Deployment Guide Page 38

 app: guestbook
 tier: frontend

Deploy the frontend service using the frontend-service.yaml file.

kubectl apply -f frontend-service.yaml
service "frontend" created

Query the list of services to verify that the frontend service is running.

kubectl get services | grep frontend
frontend NodePort 10.96.16.200 <none> 80:33444/TCP 25s

Access the UI using the identified port on any node in your cluster, for example, http://hpe2-ucp01.am2.cloudra.local:33444/ as
shown in Figure 3.

Figure 3. Guestbook UI

Teardown
A playbook is provided to remove the deployed guestbook artifacts.

cd ~/Docker-Simplivity
ansible-playbook -i vm_hosts test/playbooks/k8s-guestbook-teardown.yml --vault-password-file
.vault_pass

UCP metrics in Prometheus
Docker EE 2.1 uses a built-in deployment of Prometheus to power the performance graphs in the web UI for UCP. The metrics that UCP
generates can be routed to a separate Prometheus, if required. A convenience playbook has been provided to configure a minimal Prometheus
and Grafana deployment that can help vizualize all of the metrics that UCP generates.

For more information on UCP cluster metrics, see the article at https://docs.docker.com/ee/ucp/admin/configure/collect-cluster-metrics/.

Prerequisites
• Install the kubectl binary on your Ansible box

• Install the UCP Client bundle for the admin user

• Confirm that you can connect to the cluster by running a test command, for example, kubectl get nodes

Deploy Prometheus and Grafana
The playbook playbooks/ucp-metrics-prometheus.yml deploys pods for Prometheus and Grafana and configures them to use the
client bundle to access the UCP metrics. To run the playbook:

http://www.hpe.com
https://docs.docker.com/ee/ucp/admin/configure/collect-cluster-metrics/

Deployment Guide Page 39

cd ~/Docker-SimpliVity
ansible-playbook -i vm_hosts playbooks/ucp-metrics-prometheus.yml --vault-password-file .vault_pass

Prometheus UI
The playbook exposes a port to access the user interface for Prometheus - to find the port, get the details of the prometheus service:

kubectl get svc Prometheus
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus NodePort 10.96.216.220 <none> 9090:34713/TCP 6d

The Prometheus UI can be accessed on any node in your cluster, using the port returned by kubectl get svc. In this instance, it is accessed
at http://hpe2-ucp01.am2.cloudra.local:34713 as shown in Figure 4.

Figure 4. UCP metrics in Prometheus

Using Grafana to vizualize UCP metrics
The playbook also exposes a port to access the Grafana UI - to find the port, get the details of the grafana service:

kubectl get svc Grafana
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
grafana NodePort 10.96.177.108 <none> 3000:33118/TCP 6d

The Grafana UI can be accessed on any node in your cluster, using the port returned by kubectl get svc. In this instance, it is accessed at
http://hpe2-ucp01.am2.cloudra.local:33118. The example UCP Dashboard shown in Figure 5 is taken from
https://grafana.com/dashboards/9309.

http://www.hpe.com
https://grafana.com/dashboards/9309

Deployment Guide Page 40

Figure 5. UCP Dashboard in Grafana

Configuring storage
Deploying the NFS provisioner for Kubernetes
NFS can be provisioned using the NFS VM for proof of concept or demo systems.

Prerequisites
• Configure the variables described in the section Kubernetes Persistent Volume configuration

• Install the kubectl binary on your Ansible box

• Install the UCP Client bundle for the admin user

• Confirm that you can connect to the cluster by running a test command, for example, kubectl get nodes

Using NFS VM for post-deployment verification
In this example, it is assumed that the relevant variables are configured as shown in Table 15.

Table 15. NFS provisioner configuration values

Variable Value

nfs_provisioner_namespace nfsstorage

nfs_provisioner_role nfs-provisioner-runner

nfs_provisioner_serviceaccount nfs-provisioner

nfs_provisioner_name hpe.com/nfs

nfs_provisioner_storage_class_name nfs

nfs_provisioner_server_ip hpe-nfs.cloudra.local

nfs_provisioner_server_share /k8s

In this instance, the server IP is set to the NFS VM that has been deployed.

http://www.hpe.com

Deployment Guide Page 41

Running the playbook
Once the prerequisites are satisfied, run the appropriate playbook on your Ansible node.

cd Docker-SimpliVity
ansible-playbook -i vm_hosts playbooks/nfs-provisioner.yml --vault-password-file .vault_pass

For validation, the playbook creates a test claim and a pod, the pod writes content to a file, the pod is deleted and then the playbook checks that
the contents of the file have been persisted.

kubectl -n {{ nfs_provisioner_namespace }} apply -f /tmp/nfs-provisioner-test-claim.yml
kubectl -n {{ nfs_provisioner_namespace }} apply -f /tmp/nfs-provisioner-test-pod.yml

sleep 5 # need sleep here to allow pod/container to start up and write file

ssh {{ nfs_provisioner_server_ip }} ls -R {{ nfs_provisioner_server_share }}
echo '*** delete test-pod ***'
kubectl -n {{ nfs_provisioner_namespace }} delete -f /tmp/nfs-provisioner-test-pod.yml
echo '*** cat bar.txt ***'
ssh {{ nfs_provisioner_server_ip }} "cd {{ nfs_provisioner_server_share }}/{{nfs_provisioner_namespace
}}*; cat bar.txt"
echo '*** delete test-claim ***'
kubectl -n {{ nfs_provisioner_namespace }} delete -f /tmp/nfs-provisioner-test-claim.yml

The output of the playbook shows the various steps taking place:

"pod/test-pod created",
"/k8s:",
"nfsstorage-test-claim-pvc-e6a09191-3b41-11e9-a830-0242ac11000b",
"",
"/k8s/nfsstorage-test-claim-pvc-e6a09191-3b41-11e9-a830-0242ac11000b:",
"bar.txt",
"*** delete test-pod ***",
"pod \"test-pod\" deleted",
"*** cat bar.txt ***",
"hello",
"*** delete test-claim ***",
"persistentvolumeclaim \"test-claim\" deleted"

Running the command kubectl get sc will show the storage class named nfs:

kubectl get sc
NAME PROVISIONER AGE
nfs hpe.com/nfs 5m

The following section shows how to manually perform a similar valiation test to the one done by the playbook.

Manually testing the NFS provisioner
Create a temporary file /tmp/pvc.yml for a persistent volume claim (PVC) named dynnfs-testpvc with a storage class of nfs

cat /tmp/pvc.yml <<EOF

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: dynnfs-testpvc

http://www.hpe.com

Deployment Guide Page 42

 annotations:
 volume.beta.kubernetes.io/storage-class: "nfs"
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Mi
EOF

Create the PVC resource by running kubectl apply on this file.

kubectl apply -f /tmp/pvc.yml
persistentvolumeclaim "dynnfs-testpvc" created

Verify that the corresponding persistent volume (PV) was created at the same time.

kubectl get pv
NAME CAPACITY STATUS CLAIM STORAGECLASS AGE
pvc-e685a9d2-8a6f-11e8-... 100Mi Bound default/dynnfs-testpvc nfs 4s

Define a pod that will mount the persistent volume by using the persistent volume claim. The persistent volume is mounted under /tmp/foo.

cat /tmp/pod.yml <<EOF
apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: dynnfs-testpod
spec:
 selector:
 matchLabels:
 app: dynnfs-testpod
 replicas: 1
 template:
 metadata:
 labels:
 app: dynnfs-testpod
 spec:
 volumes:
 - name: pod-data
 persistentVolumeClaim:
 claimName: dynnfs-testpvc
 containers:
 - name: dynnfs-testpod
 command:
 - sh
 - -c
 - while true; do sleep 1; done
 image: radial/busyboxplus:curl
 volumeMounts:
 - mountPath: /tmp/foo
 name: pod-data
EOF

Create the pod resource by running kubectl apply on the file.

http://www.hpe.com

Deployment Guide Page 43

kubectl apply -f /tmp/pod.yml
deployment.apps "dynnfs-testpod" created

Retrieve the pod ID and then execute a command in the pod to create a test file on the persistent volume. The file is named
/tmp/foo/bar.txt and contains the string hello.

pod=$(kubectl get pod | awk '/dynnfs-testpod-/ {print $1}')
kubectl exec -it $pod -- sh -c "echo hello >/tmp/foo/bar.txt"

In this example, where the NFS VM is being used as the storage back-end, you can examine the content of the folder containing the persistent
volumes. Given the values specified above, where the NFS VM is named hpe-nfs and the nfs_provisioner_server_share is k8s, you
can connect to the VM and explore the folder as follows.

ssh hpe-nfs ls -R /k8s
/k8s:
default-dynnfs-testpvc-pvc-e685a9d2-8a6f-11e8-9025-0242ac110010

/k8s/default-dynnfs-testpvc-pvc-e685a9d2-8a6f-11e8-9025-0242ac110010:
bar.txt

Examine the contents of the file to ensure that the string hello has been persisted in the file bar.txt.

ssh hpe-nfs cat /k8s/default-dynnfs-testpvc-pvc-e685a9d2-8a6f-11e8-9025-0242ac110010/bar.txt
hello

Validating the NFS provisioner using WordPress and MySQL
A sample playbook has been provided to show how to use the NFS provioner for perstent storage for a WordPress and MySQL deployment.

Prerequisites
• Install the kubectl binary on your Ansible box

• Install the UCP Client bundle for the admin user

• Confirm that you can connect to the cluster by running a test command, for example, kubectl get nodes

Deploy the NFS provisioner as outlined in the preceeding section. The article assumes that the NFS configuration is the same as used in that
section, as shown in Table 16:

Table 16. NFS provisioner configuration values

Variable Value

nfs_provisioner_namespace nfsstorage

nfs_provisioner_role nfs-provisioner-runner

nfs_provisioner_serviceaccount nfs-provisioner

nfs_provisioner_name hpe.com/nfs

nfs_provisioner_storage_class_name nfs

nfs_provisioner_server_ip hpe2-nfs.cloudra.local

nfs_provisioner_server_share /k8s

Running the playbook
The playbook test/playbooks/wordpress-mysql-nfs.yml creates Persistent Volume Claims for both Wordpress and MySQL, deploys
both applications and makes the WordPress UI available via a NodePort.

http://www.hpe.com

Deployment Guide Page 44

cd ~/Docker-SimpliVity
ansible-playbook -i vm_hosts ./test/playbooks/wordpress-mysql-nfs.yml --vault-password-file
.vault_pass

The output shows the components created along with the NodePort for the wordpress service.

ok: [localhost] => {
 "ps.stdout_lines": [
 "Cluster \"ucp_hpe2-ucp01.am2.cloudra.local:6443_admin\" set.",
 "User \"ucp_hpe2-ucp01.am2.cloudra.local:6443_admin\" set.",
 "Context \"ucp_hpe2-ucp01.am2.cloudra.local:6443_admin\" modified.",
 "namespace/wordpress-mysql created",
 "secret/mysql-pass created",
 "persistentvolumeclaim/mysql-pv-claim created",
 "persistentvolumeclaim/wp-pv-claim created",
 "deployment.apps/wordpress-mysql created",
 "deployment.apps/wordpress created",
 "service/wordpress-mysql created",
 "service/wordpress created",
 "NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE",
 "wordpress NodePort 10.96.216.103 <none> 80:33790/TCP 0s",
 "wordpress-mysql ClusterIP None <none> 3306/TCP 0s"
]

Browse to the specified port on any node in your cluster.

http://hpe2-ucp01.am2.cloudra.local:33790

Configuring WordPress
You need to configure the language and password before WordPress is ready to use, as shown in Figure 6.

Figure 6. Configure WordPress language

http://www.hpe.com

Deployment Guide Page 45

Add a username, password and other configuration details, as shown in Figure 7.

Figure 7. Configure WordPress password

Log in to WordPress, as shown in Figure 8, with the user name and password you have just set up.

Figure 8. WordPress login

The welcome page is displayed, as shown in Figure 9.

http://www.hpe.com

Deployment Guide Page 46

Figure 9. WordPress welcome

Create your first post
Click on Write your first blog post and start creating some content. Add a blog title and then click Add Media to upload an image to
the Media Library and then Insert into post. In this example, as shown in Figure 10, the image is a file named 380 with OmniStack.jpg.

http://www.hpe.com

Deployment Guide Page 47

Figure 10. Create your first WordPress blog post

Click Publish and then View post to see your new blog post, as shown in Figure 11.

Figure 11. View your first post

Test persistence for WordPress
Find your WordPress Persistent Volume Claim (PVC).

http://www.hpe.com

Deployment Guide Page 48

kubectl -n wordpress-mysql get pvc
NAME STATUS VOLUME CAPACITY ACCESS STORAGECLASS
AGE
mysql-pv-claim Bound pvc-d48880e3-2d58-11e9-adb2-0242ac110003 1Gi RWO nfs
1h
wp-pv-claim Bound pvc-d4bc101f-2d58-11e9-adb2-0242ac110003 20Gi RWO nfs
1h

Connect to the NFS VM and browse the /k8s folder to find the volume for the WordPress claim wp-pv-claim.

ssh hpe2-nfs ls /k8s
wordpress-mysql-mysql-pv-claim-pvc-d48880e3-2d58-11e9-adb2-0242ac110003
wordpress-mysql-wp-pv-claim-pvc-d4bc101f-2d58-11e9-adb2-0242ac110003

Locate the wp-content folder.

ssh hpe2-nfs ls /k8s/wordpress-mysql-wp-pv-claim-pvc-d4bc101f-2d58-11e9-adb2-0242ac110003
index.php
license.txt
readme.html
wp-activate.php
wp-admin
wp-blog-header.php
wp-comments-post.php
wp-config.php
wp-config-sample.php
wp-content
wp-cron.php
wp-includes
wp-links-opml.php
wp-load.php
wp-login.php
wp-mail.php
wp-settings.php
wp-signup.php
wp-trackback.php
xmlrpc.php

Now find the image used in the blog post.

ssh hpe2-nfs ls /k8s/wordpress-mysql-wp-pv-claim-pvc-d4bc101f-2d58-11e9-adb2-0242ac110003/wp-
content/uploads/2019/02
380-with-OmniStack-100x100.jpg
380-with-OmniStack-150x150.jpg
380-with-OmniStack-300x150.jpg
380-with-OmniStack-768x384.jpg
380-with-OmniStack.jpg

Note that WordPress has created a number of variations of the original image, for different screen sizes. Shutdown wordpress (leave MySQL
running for now).

kubectl -n wordpress-mysql delete -f /tmp/wordpress-mysql-nfs/wordpress-deployment.yml
deployment.apps "wordpress" deleted

Refresh the page in the browser to confirm that WordPress is indeed inaccessible.

http://www.hpe.com

Deployment Guide Page 49

Figure 12. Cannot connect to WordPress

Now redeploy Wordpress

kubectl -n wordpress-mysql apply -f /tmp/wordpress-mysql-nfs/wordpress-deployment.yml
deployment.apps/wordpress created

Refresh the page in the browser to confirm that WordPress is now accessible and that the image in the blog post has survived the shutdown, as
shown in Figure 13.

Figure 13. View restored post

Test persistence in MySQL
A similar procedure can be performed for MySQL. While assets such as images, CSS files, etc are stored in the WordPress volume, information
about users, posts, comments, tags, etc are stored in the MySQL database. It is possible to browse the tables in the database and identify the
rows related to the blog post you created.

Shut down MySQL as follows:

kubectl -n wordpress-mysql delete -f /tmp/wordpress-mysql-nfs/mysql-deployment.yml

deployment.apps "wordpress-mysql" deleted

http://www.hpe.com

Deployment Guide Page 50

Refresh the page for your blog post, and you will see that WordPress can no longer connect to the database, as shown in Figure 14.

Figure 14. Cannot connect to MySQL

Restore the MySQL deployment:

kubectl -n wordpress-mysql apply -f /tmp/wordpress-mysql-nfs/mysql-deployment.yml
deployment.apps/wordpress-mysql created

Refresh the page in the browser, as shown in Figure 15, to confirm that WordPress can now access the database and that the blog post has
survived the database shutdown.

Figure 15. Check after MySQL restored

Deploying Windows workers
The site.yml playbook will automatically deploy any Windows workers declared in the inventory. The playbooks should run for approximately
70-80 minutes with 3 Windows workers added to the default deployment (depending on your server specifications and the size of your
environment). The increase in running time is primarily due to the need to update Windows after creating the VMs.

This section describes the functionality and configuration of the Windows-specific playbooks. It also details how to create the initial Windows
template and how to manage deploying Windows worker nodes behind a proxy.

Create the Windows Template
To create the Windows VM Template that you will use as the base for all your Windows worker nodes, you will first create a Virtual Machine with
the OS installed and then convert the Virtual Machine to a VM Template. The VM Template is created as lean as possible, with any additional
software installs and/or system configuration performed subsequently using Ansible.

As the creation of the template is a one-off task, this procedure has not been automated. The steps to create a VM template manually are
outlined below.

http://www.hpe.com

Deployment Guide Page 51

Log in to vCenter and create a new Virtual Machine with the following characteristics:

• Guest OS Family: Windows, Guest OS Version: Microsoft Windows Server 2016 (64-bit)

• Hard Disk size: 100GB (Thin provisioning), 1 vCPU and 4 GB of RAM. Both vCPU and memory can be altered later after you deploy from this
template.

• A single network controller connected to the network or VLAN of your choice. All VMs will connect to this same network.

• Change the network type to VMXNET3, and attach the Windows Server 2016 ISO image from a datastore ensuring you connect the CD/DVD
drive on boot.

• Click on the VM Options tab, and in the Boot Options section, select Force BIOS setup(*) to ensure that the machine enters the
BIOS setup screen on next boot of this VM. This will allow you to adjust the boot order, placing the virtual CDROM in front of your hard drive.

• Optionally you can remove the floppy drive.

Install Windows Server 2016:

 Power on the selected VM and then Open Console. Once connected to the console, you will be placed in the BIOS setup screen.

 Select the Boot tab, click on CD-ROM Drive and move up the CDROM drive above the hard drive. This allows your Windows Server 2016 ISO
image to be loaded first on boot. F10 Save and exit is next step.

 Enter your choices for Language, Time/Currency Format, Keyboard and then Install Now.

 Select the OS you want to install, and then select Custom: Install Windows Only.

 Select drive 0, the 100 GB drive you specified earlier, as the location for installing windows.

 Add a password for the Administrator user.

 Install VMware Tools and reboot.

 Once the VM has re-booted, add a temporary network IP address.

 Use the sconfig utility from (MS-DOS) command line to install Windows updates and enable remote desktop.

 Perform any other customizations you require at this point.

 Prior to converting the VM to Template, run Sysprep: C:\Windows\System32\Sysprep\Sysprep.exe

 Ensure ‘System Out-of-Box Experience (OOBE)’ is selected.

 Select the ‘Generalize’ option.

 Select ‘Shutdown’ from the Shutdown Options.

 Shutdown VM, and untick Connect CD/DVD so that the Windows Server 2016 ISO is no longer mounted.

 Boot the Windows VM one final time and enter regional settings applicable to your location and keyboard mapping, then enter a password
and Shutdown VM.

Note
The vmware_guest module used by the playbooks will generate a new SID.

Turn the VM into a template by right-clicking on your VM and selecting Template -> Convert to Template. This will create a new
template visible under VM Templates in Folders, ready for future use.

Playbooks for adding Windows workers
• playbooks/create_vms.yml will create all the necessary Windows 2016 VMs for the environment based on the Windows VM Template

defined in the win_vm_template variable. Windows workers nodes are defined in the group win_worker in the vm_hosts inventory.

http://www.hpe.com

Deployment Guide Page 52

• playbooks/install_docker.yml installs Docker along with all its dependencies on your Windows VMs

• playbooks/scale_workers.yml installs and configures additional Windows workers on the target nodes defined by the group
win_worker in the vm_hosts inventory.

• playbooks/splunk_uf_win.yml installs and configures the Splunk Universal Forwarder on each Windows machine in the inventory.

Windows configuration
Window-related variables are shown in Table 17.

Table 17. Windows variables

Variable File Description

win_vm_template group_vars/vars Name of the Windows 2016 VM Template to use. Note that this is the name from a vCenter perspective, not
the hostname.

win_username group_vars/vars Windows user name. The default is Administrator

win_password group_vars/vault The password for the Windows account.

windows_vdvs_ps group_vars/vars Variable used to download the PowerShell script that is used to install vDVS for Windows. For example,
https://raw.githubusercontent.com/vmware/vsphere-storage-for-
docker/master/install-vdvs.ps1

windows_vdvs_path group_vars/vars Variable used to download vSphere Docker Volume Service software. This variable is combined with
windows_vdvs_version (below) to generate a URL of the form
<windows_vdvs_path>_<windows_vdvs_version>.zip to download the software. For example, to download
version 0.21, set windows_vdvs_path equal to https://vmware.bintray.com/vDVS/vsphere-
storage-for-docker_windows and windows_vdvs_version equal to 0.21

windows_vdvs_version group_vars/vars Combined with windows_vdvs_path, this variable is used to generate the URL for downloading the
software.

windows_vdvs_directory group_vars/vars Variable used to determine where vDVS software will be unzipped and installed from. The default is
C:\Users\Administrator\Downloads

docker_ee_version_windows group_vars/vars It is important that the version of the Docker engine running on your Windows worker nodes is the same as
that running on RHEL in the rest of your cluster. You should use this variable to explicitly match up the
versions. For Docker 2.1, the recommended value is '18.09'. If you do not explicitly set this value, you may end
up with an incompatible newer version running on your Windows workers.

windows_update group_vars/vars Variable used to determine if Windows updates are automatically downloaded when installing Docker on
Windows worker nodes (in the playbooks/install_docker.yml). Defaults to true. See the section
Deploying Windows workers behind a proxy for more information.

windows_winrm_script group_vars/vars Variable used to determine where the winrm Powershell script will be downloaded from. See the following
section for more information.

Configuring the winrm remoting script
The playbooks for deploying Windows workers rely on a Powershell script for remote access from the Ansible machine. The script
ConfigureRemotingForAnsible.ps1 is available online on GitHub at
https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/ConfigureRemotingForAnsible.ps1.

You need to make this script available locally:

 Download the script:

wget
https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/ConfigureRemotingForAnsibl
e.ps1

http://www.hpe.com
https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/ConfigureRemotingForAnsible.ps1

Deployment Guide Page 53

 Deploy a local HTTP server, enabling port 80, for example:

yum install httpd
systemctl enable httpd
systemctl start httpd
firewall-cmd --permanent --add-port 80/tcp --zone=public
firewall-cmd –reload

 Copy the downloaded script to the web server:

cp ConfigureRemotingForAnsible.ps1 /var/www/html

 Configure the variable to point at the local web server, for example,

windows_winrm_script: 'http://10.10.174.230/ConfigureRemotingForAnsible.ps1'

group_vars/win_worker.yml
There is a separate file in the group_vars directory named win_worker.yml for advanced, Windows-specific configuration. These variables
are used in the following playbooks:

• playbooks/create_windows_vms.yml

• playbooks/install_docker_window.yml

• playbooks/scale_workers_windows.yml

In general, it should not be necessary to modify this file, but the variables are documented in Table 18 for the sake of completeness.

Table 18. Advanced windows variables

Variable File Description

ansible_user group_vars/win_worker.yml Defaults to the Windows user account win_username as specified in group_vars/vars

ansible_password group_vars/win_worker.yml Defaults to the Windows user password win_password as specified in group_vars/vault

ansible_port group_vars/win_worker.yml 5986

ansible_connection group_vars/win_worker.yml winrm

ansible_winrm_server_cert_validation group_vars/win_worker.yml Defaults to ignore

ansible_winrm_operation_timeout_sec group_vars/win_worker.yml Defaults to 250

ansible_winrm_read_timeout_sec group_vars/win_worker.yml Defaults to 300

windows_timezone group_vars/win_worker.yml Defaults to 15. Valid values are available at https://msdn.microsoft.com/en-
us/library/ms912391.aspx

Windows operating system and Docker EE
Docker Enterprise Edition for Windows Server (Docker EE) enables native Docker containers on Windows Server. This solution has been tested
with Windows worker nodes running Windows Server 2016 and with Docker EE 18.09. More recent versions of Windows Server may work but
have not been tested.

Note
Docker Universal Control Plane is not currently supported on Windows Server 1709 due to image incompatibility issues. For more information,
see the Docker documentation Install Docker Enterprise Edition for Windows Server.

http://www.hpe.com
https://msdn.microsoft.com/en-us/library/ms912391.aspx
https://msdn.microsoft.com/en-us/library/ms912391.aspx
https://docs.docker.com/install/windows/docker-ee/

Deployment Guide Page 54

This solution recommends that you only run Windows Server 2016 on your Windows worker nodes and that you install any required updates to
your Windows nodes in a timely manner.

For information on how to update Docker EE on Windows Server 2016, see the Docker documentation Update Docker EE.

Deploying Sysdig monitoring
By default, the playbooks for deploying Sysdig are commented out in site.yml and must be explicitly enabled in that file if you want it included
in the initial deployment. Alternatively, you can run the specific playbooks detailed in this section in a stand-alone manner, subsequent to the
initial deployment.

Note
By default, you must have outgoing port 6666 open in your firewall, to allow data to flow to collector.sysdigcloud.com. You can
configure the agent to use a different port by using the variable sysdig_collector_port in group_vars/vars.

If you are using a proxy, it must be configured to be "fully-transparent". Non-transparent proxies will not allow the agent to connect.

Monitoring with Sysdig
Sysdig's approach to Docker monitoring uses transparent instrumentation to see inside containers from the outside, with no need for agents in
each container. Metrics from Docker containers, and from your applications running inside them, are aggregated in real-time across each service
to provide meaningful monitoring dashboards and alerts for your application. Figure 16 provides an overview of the Sysdig architecture.

Figure 16. Sysdig architecture

Sysdig Monitor allows you to analyze response times, application performance metrics, container and server utilization metrics, and network
metrics. You can build dashboards across applications, micro-services, container and networks, and explore metadata from Docker, Kubernetes,
Mesos and AWS. For more information, see the Sysdig Container Monitoring video overview and the Sysdig Monitor 101 training course.

Sysdig Secure provides security at the orchestrator as well as the container level. You create service-aware policies that allow you to take actions
(like killing a container) or send alerts (to Slack, Splunk, etc) whenever a policy violation occurs. All commands are audited to help you identify
anomalous actions, along with taking snapshots of all activities pre-and-post a policy violation. For more information, see the Sysdig Secure video
overview and the Sysdig Secure 101 training course.

http://www.hpe.com
https://docs.docker.com/install/windows/docker-ee/#update-docker-ee
https://www.youtube.com/watch?v=NR9XLZw0ndo&t=5s
https://sysdig.teachable.com/p/sysdig-101
https://www.youtube.com/watch?v=e_kdjHjK7mY
https://sysdig.teachable.com/p/sysdig-secure-101

Deployment Guide Page 55

The implementation in this solution uses the Software as a Service (SaaS) version of Sysdig. The playbooks deploy Sysdig Agent software on
each UCP, DTR and Linux worker node, as well as the NFS, logger and load balancer VMs and captured data is relayed back to your Sysdig SaaS
Cloud portal. The deployment provides access to a 90 day try-and-buy, fully featured version of the Sysdig software.

Note
The Sysdig functionality is not turned on by default in this solution - see the section on Sysdig configuration for more information on how to
enable Sysdig. For more information on how to access the 90 day try-and-buy version, see the GitHub repository at
https://hewlettpackard.github.io/Docker-SimpliVity/sysdig/sysdig-trial.html.

Playbooks for installing Sysdig on RHEL
The following playbooks are used when deploying Sysdig:

• playbooks/sysdig-k8s-rbac.yml is used to configure Sysdig for Kubernetes.

• playbooks/install_sysdig.yml is used to configure Sysdig for Docker swarm. It opens the required port in the firewall, and installs the
latest version of the Sysdig agent image on the nodes. By default, this playbook is commented out in site.yml, so if you want to use the
solution to automatically configure Sysdig for Docker swarm, you must uncomment this line.

Sysdig configuration
Separate playbooks are used to install Sysdig for Docker swarm and Sysdig for Kubernetes.

Sysdig configuration for Docker swarm
The playbook playbooks/install_sysdig.yml is used to automate the configuration of the SaaS setup for Docker swarm. By default, this
playbook is commented out in site.yml and must be explicitly enabled. The variables used to configure Sysdig for Docker swarm are detailed
in Table 19.

Table 19. Sysdig variables for Docker swarm

Variable File Description

sysdig_access_key group_vars/vault After the activation of your account on the Sysdig portal, you will be provided with your access key. This is used
by the playbooks to install the agent on each UCP, DTR and Linux worker node, as well as the NFS, logger and
load balancer VMs.

sysdig_agent group_vars/vars Specifies the URL to the Sysdig Linux native install agent, for example,
https://s3.amazonaws.com/download.draios.com/stable/install-agent

sysdig_tags group_vars/vars Tagging your hosts is highly recommended. Tags allow you to sort the nodes of your infrastructure into custom
groups in Sysdig Monitor. Specify location, role, and owner in the format: 'location:City,role:Express
Containers,owner:Customer Name'

Sysdig configuration for Kubernetes
The playbook playbooks/sysdig-k8s-rbac.yml is used to automate the configuration of the SaaS setup for Kubernetes. The variables
used to configure Sysdig for Kubernetes are detailed in Table 20.

Table 20. Sysdig variables for Kubernetes

Variable File Description

sysdig_access_key group_vars/vault After the activation of your account on the Sysdig portal, you will be provided with your access key. This
is used by the playbooks to install the agent on each UCP, DTR and Linux Kubernetes worker nodes.

sysdig_collector group_vars/vars The URL for the Sysdig SaaS, by default, 'collector.sysdigcloud.com'

sysdig_collector_port group_vars/vars The port used by the agent, by default, '6666'

http://www.hpe.com
https://hewlettpackard.github.io/Docker-SimpliVity/sysdig/sysdig-trial.html

Deployment Guide Page 56

sysdig_tags group_vars/vars Tagging your hosts is highly recommended. Tags allow you to sort the nodes of your infrastructure into
custom groups in Sysdig Monitor. Specify location, role, and owner in the format:
'location:City,role:Express Containers,owner:Customer Name'

k8s_cluster group_vars/vars This should match the cluster name displayed when you source the environment setup script, for
example.,

source env.sh
Cluster "ucp_hpe-ucp.cloudra.local:6443_admin" set.
User "ucp_hpe-ucp.cloudra.local:6443_admin" set.

For more information, see the section on installing the UCP client bundle in the section Deploying Sysdig
monitoring on Kubernetes.

Registering for Sysdig trial
Hewlett Packard Enterprise has teamed up with Sysdig to offer a fully featured 90-day trial version of Sysdig Monitor and Secure as part of the
HPE Express Containers with Docker Enterprise Edition on HPE SimpliVity solution. For more details on how to sign up, see the GitHub
repository at https://github.com/HewlettPackard/Docker-SimpliVity.

After registering for the trial, you will be presented with options for setting up your environment, as shown in Figure 17.

Figure 17. Sysdig Monitor set up environment

Sysdig Monitoring for Kubernetes
If you are deploying Sysdig monitoring on Kubernetes, select the Kubernetes | GKE | OpenShift option. You will be presented with an
access code, as shown in Figure 18.

http://www.hpe.com
https://github.com/HewlettPackard/Docker-SimpliVity

Deployment Guide Page 57

Figure 18. Sysdig Monitor access code for Kubernetes

Use the sysdig_access_key field in your group_vars/vault, as described in the section Sysdig configuration for Kubernetes. Once you
deploy your environment and your Kubernetes nodes connect to the Sysdig SaaS platform, Sysdig will automatically display information
regarding your setup, as shown in Figure 19.

Figure 19. Sysdig Monitor Spotlight for Kubernetes

Select View Dashboard for an entry point to accessing all your monitoring data. Alternatively, you can browse to https://app.sysdigcloud.com
at any time to access your dashboards.

http://www.hpe.com
https://app.sysdigcloud.com/

Deployment Guide Page 58

Sysdig Monitor for Docker swarm
If you are deploying Sysdig monitoring on Docker swarm, select the Non-Orchestrated: Native Linux option. You will be presented with
a screen containing details for the URL to download the Sysdig agent, along with your access code embedded in the command, as shown in
Figure 20.

Figure 20. Sysdig Monitor download location and access code for Docker

The download URL is used in the sysdig_agent field in group_vars/vars, while the access code is stored in the sysdig_access_key
field in your group_vars/vault, as described in the section Sysdig configuration for Docker swarm.

Once you deploy your environment and your Docker swarm nodes connect to the Sysdig SaaS platform, Sysdig will automatically display
information regarding your setup. Alternatively, you can browse to https://app.sysdigcloud.com at any time to access your dashboards.

Deploying Sysdig monitoring on Kubernetes
The latest version of Sysdig supports monitoring of Kubernetes logs and metrics.

Prerequisites
• Install the kubectl binary on your Ansible box.

• Install the UCP Client bundle for the admin user.

• Confirm that you can connect to the cluster by running a test command, for example, kubectl get nodes

• Ensure that you have configured the required variables, as described in the section Sysdig configuration for Kubernetes

For example, you add the relevant variables in the group_vars/vars file.

sysdig_collector: 'collector.sysdigcloud.com'
sysdig_collector_port: '6666'
sysdig_tags: 'location:Enter city,role:Enter role,owner:Customer name'
k8s_cluster: 'ucp_hpe2-ucp.cloudra.local'

You should add the access key to the encrypted group_vars/vault using the command ansible-vault edit group_vars/vault.

sysdig_access_key: '10****97-9160-****-9061-84bfd0f****0'

Running the playbook
The playbook playbooks/k8s-install-sysdig.yml is used to automate the configuration of the SaaS setup for Docker swarm.

http://www.hpe.com
https://app.sysdigcloud.com/

Deployment Guide Page 59

cd Docker-SimpliVity
ansible-playbook -i vm_hosts playbooks/sysdig-k8s-rbac.yml --vault-password-file .vault_pass

Using the Sysdig software as a solution (SaaS) website https://app.sysdigcloud.com, you are able to view, analyze and inspect various different
dashboards. Initially, you will just see the monitoring information for the infrastructure itself. Deploy a sample application, as detailed in the
section Kubernetes guestbook example with Redis, and use the Sysdig solution to analyze the different facets of the deployed application.

Deploying Sysdig monitoring on Docker Swarm
The playbook playbooks/install_sysdig.yml is used to automate the configuration of the SaaS setup for Docker swarm. By default, this
playbook is commented out in site.yml and must be explicitly enabled. An access key variable must be set in the group_vars/vault file as
detailed in Table 19.

cd Docker-SimpliVity
ansible-playbook -i vm_hosts playbooks/install_sysdig.yml --vault-password-file .vault_pass

Using the Sysdig software as a solution (SaaS) website https://app.sysdigcloud.com, you are able to view, analyze and inspect various different
dashboards.

http://www.hpe.com
https://app.sysdigcloud.com/
https://app.sysdigcloud.com/

Deployment Guide Page 60

Deploying Splunk
This section provides an overview of Splunk, outlines how to configure and run the relevant playbooks and shows how to access the UI to see the
resultant Docker and Kubernetes dashboards.

Monitoring with Splunk
Splunk Enterprise allows you to collect and index any data from any source, and to monitor systems and infrastructure in real time to preempt
issues before they happen. It allows you to analyze your data to understand trends, patterns of activity and behavior, giving you valuable
intelligence across your entire organization. The solution architecture for Splunk is shown in Figure 21.

Figure 21. Solution architecture: Hybrid Linux and Windows workers with Splunk and Sysdig

http://www.hpe.com

Deployment Guide Page 61

This solution allows you to integrate your CaaS deployment with an existing Splunk Enterprise installation or to deploy a stand-alone Splunk
Enterprise demo environment as a Docker stack in your cloud. In both instances, Universal Forwarders are used to collect data from your
applications running on your Linux and Windows worker nodes in your cloud, as well as log data from the Docker platform itself and from the
infrastructure VMs and servers. Figure 22 shows the Splunk architecture.

Figure 22. Splunk architecture

All the Universal Forwarders run natively on the operating system to allow greater flexibility in terms of configuration options. Each forwarder
sends the data it collects to one or more indexers in the central Splunk.

Linux worker nodes: The Universal Forwarders on the Linux worker nodes collect log and metrics data. The log data includes:

• /var/log/messages from the Docker host (including the daemon engine logs)

• /var/log/secure from the Docker hosts

• container logs via a Splunk technical add-on

The metrics data is collected via a technical add-on and includes:

• docker stats

• docker top

• docker events

• docker service stats

http://www.hpe.com

Deployment Guide Page 62

Windows worker nodes: The Universal Forwarders running on the Windows worker nodes collect the following data:

• Windows logs

• CPU stats

• Memory stats

• Network Interface stats

• and more

For more information on configuring standalone Splunk for Linux and Windows worker nodes, see the section on Splunk prerequisites.

UCP and ESXi: UCP operational logs and ESXi logs are forwarded to the logger VM via TCP ports 1514 and 514 respectively. Port 1514 is
assigned a special sourcetype of ucp which is then used by the Splunk Docker APP to interpret UCP logs. The Universal Forwarder runs the
rsyslog daemon which will record the log messages coming from the ESX machines into the /var/log/messages file on the VM.

Non-Docker VMs: Other VMs, for example, NFS, use a Splunk monitor to collect and forward data from the following files:

• /var/log/messages

• /var/log/secure (Red Hat)

Note
You can configure the list of files monitored by the Universal Forwarder.

Other syslog senders can be configured to send their data to the logger VM or directly to central Splunk.

Playbooks for installing Splunk
The following playbooks are used to install Splunk.

• playbooks/splunk_demo.yml installs a demo of Splunk Enterprise in the cluster (if the splunk_demo deployment option is selected. A
value of splunk is used to configure an external production Splunk deployment.)

• playbooks/splunk_uf.yml installs and configures the Splunk Universal Forwarder on each Linux and Windows node in the inventory

Splunk configuration
This solution supports two types of Splunk deployments. Firstly, there is a built-in deployment useful for demos and for getting up to speed with
Splunk. Alternatively, the solution can be configured to interact with a standalone, production Splunk deployment that you set up independently.
In this case, you must explicitly configure the universal forwarders with external "forward servers" (Splunk indexers), whereas this happens
automatically with the built-in option.

In the standalone deployment, you can enable SSL authentication between the universal forwarders and the indexers, by setting the
splunk_ssl variable to yes in the file group_vars/vars. The built-in demo deployment does not support SSL and so, in this instance, the
value of the splunk_ssl variable is ignored. For more information on enabling SSL, see Appendix C.

After the installation is complete, the Splunk UI can be reached at http://<fqdn>:8000, where <fqdn> is the FQDN of one of your Linux
Docker nodes. Mesh routing does not currently work on Windows so you must use a Linux node to access the UI.

Splunk prerequisites
You should select the Splunk deployment type that you require by setting the variable monitoring_stack in the group_vars/vars file to
either splunk, to use a standalone Splunk deployment, or splunk_demo for the built-in version. If you omit this variable, or if it has an invalid
value, no Splunk deployment will be configured.

For both types of deployment, you need to download the Splunk universal forwarder images/packages from
https://www.splunk.com/en_us/download/universal-forwarder.html. Packages are available for 64-bit Linux and 64-bit Windows 8.1/Windows 10.
Download the RPM package for Linux 64-bit (2.6+ kernel Linux distributions) to ./files/splunk/linux. If you are deploying Windows

http://www.hpe.com
https://www.splunk.com/en_us/download/universal-forwarder.html

Deployment Guide Page 63

nodes, download the MSI package for Windows 64 bit to ./files/splunk/windows. For a dual Linux/Windows deployment, the images and
packages must have same name and version, along with the appropriate extensions, for example:

• files/splunk/windows/splunkforwarder-7.1.2.msi

• files/splunk/linux/splunkforwarder-7.1.2.rpm

You need to set the variable splunk_architecture_universal_forwarder_package to the name you selected for the package(s), not
including the file extension. Depending on the Splunk deployment you have chosen, edit the file
templates/monitoring/splunk/vars.yml or the file templates/monitoring/splunk_demo/vars.yml and set the variable, for
example:

splunk_architecture_universal_forwarder_package: 'splunkforwarder-7.1.2'

As of Splunk version 7.1, the Splunk universal forwarder must be deployed with a password. This password is specified using the variable
splunk_uf_password which is configured in group_vars/vault.

If you are using a standalone Splunk deployment, you must specify the list of indexers using the variable
splunk_architecture_forward_servers in group_vars/vars, for example:

splunk_architecture_forward_servers:
- splunk-indexer1.cloudra.local:9997
- splunk-indexer2.cloudra.local:9997

By default, the indexers are configured in a single load balancing group. This can be changed by editing the file outputs.conf.j2 in the
folder template/monitoring/splunk/. For more information on forwarding using Universal Forwarder, see the Splunk documentation at
http://docs.splunk.com/Documentation/Forwarder/7.0.2/Forwarder/Configureforwardingwithoutputs.conf.

On your standalone Splunk installation, you need to install the following add-ons and apps.

To monitor Linux worker nodes, the Docker app should be installed on central Splunk. More info on this Docker app can be found at
https://github.com/splunk/docker-itmonitoring and at https://hub.docker.com/r/splunk/universalforwarder/.

To monitor the Windows worker nodes, install the Splunk App for Windows Infrastructure on central Splunk and its dependencies:

• Splunk App for Windows Infrastructure. The Splunk App for Windows Infrastructure is not compatible with The Splunk Add-on for Windows
5.0 at this time. See https://splunkbase.splunk.com/app/1680/

• Splunk Add-on for Microsoft Windows version 4.8.4 - see https://splunkbase.splunk.com/app/742/

• Splunk Add-On for Microsoft Active Directory version 1.0.0 - see https://splunkbase.splunk.com/app/3207/

• Splunk Add-on for Microsoft Windows DNS version 1.0.1 (if this is not installed on central Splunk, you will see yellow icons on some
dashboards with the message eventtype wineventlog-dns does not exist or is disabled) - see
https://splunkbase.splunk.com/app/3208/

• Splunk Supporting Add-on for Active Directory version 2.1.7 (if this is not installed on central Splunk, you will see yellow icons on some
dashboards with the message eventtype wineventlog-ds does not exist or is disabled) - see
https://splunkbase.splunk.com/app/1151/

If you want to use your own certificates in your standalone Splunk deployment to secure the communications between the indexers and the
universal forwarders, see Appendix D.

You can specify advanced Splunk configuration in the following files:

• files/splunk/linux/SPLUNK_HOME

• files/splunk/linux/DOCKER_TAS

• files/splunk/windows/SPLUNK_HOME

http://www.hpe.com
http://docs.splunk.com/Documentation/Forwarder/7.0.2/Forwarder/Configureforwardingwithoutputs.conf
https://github.com/splunk/docker-itmonitoring
https://hub.docker.com/r/splunk/universalforwarder/
https://splunkbase.splunk.com/app/1680/
https://splunkbase.splunk.com/app/742/
https://splunkbase.splunk.com/app/3207/
https://splunkbase.splunk.com/app/3208/
https://splunkbase.splunk.com/app/1151/

Deployment Guide Page 64

These files will be copied as-is to the systems running the universal forwarder.

Configuring syslog in UCP
In order to see some data in the UCP operational dashboard, you need to have UCP send its logs to the VM configured in the [logger] group. For
example, for the following vm_host file:

[logger]
hpe-logger ip_addr='10.60.59.24/16' esxi_host='esxi-hpe-2.cloudra.local'

This will configure UCP to send its logs to hpe-logger.cloudra.local:1514. You need to select the TCP protocol as shown in Figure 23.

Figure 23. Configure Remote Syslog Server in UCP

http://www.hpe.com

Deployment Guide Page 65

Configuring syslog in ESX
This configuration must be done manually for each ESX server. The syslog server should be the server configured in the [logger] group in your
vm_hosts inventory. The protocol should be tcp and the port 514 as shown in Figure 24.

Figure 24. Configure Syslog on ESXi Hosts

For more information, see the VMware documentation at https://docs.vmware.com/en/VMware-
vSphere/6.5/com.vmware.vsphere.security.doc/GUID-9F67DB52-F469-451F-B6C8-DAE8D95976E7.html.

Limitations
• The Dockerized Splunk App has a number of open issues

– https://github.com/splunk/docker-itmonitoring/issues/19

– https://github.com/splunk/docker-itmonitoring/issues/20

• The Docker events tab is not working

Accessing Splunk UI
After the installation is complete, the Splunk UI can be reached at http://<fqdn>:8000, where <fqdn> is the FQDN of one of your Linux Docker
nodes. Mesh routing does not currently work on Windows so you must use a Linux node to access the UI. For example:

http://hpe-ucp01.am2.cloudra.local:8000/

The default username and password for Splunk is admin / changeme.

http://www.hpe.com
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.security.doc/GUID-9F67DB52-F469-451F-B6C8-DAE8D95976E7.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.security.doc/GUID-9F67DB52-F469-451F-B6C8-DAE8D95976E7.html

Deployment Guide Page 66

Use the Docker App to view the Docker overview as shown in Figure 25 and the Docker stats as shown in Figure 26.

Figure 25. Docker overview

Figure 26. Docker stats

http://www.hpe.com

Deployment Guide Page 67

Use the k8s App to see the Kubernetes overview as shown in Figure 27 and then access the details for deployments, daemon sets, replica sets,
services, etc.

Figure 27. Kubernetes overview

Redeploying Splunk demo
The Splunk demo deployment, whilst fully featured, is severely restricted in the amount of data it can process. Once this limit has been reached,
often after running for just one or two days, it is necessary to redeploy the application if you want to continue experimenting with the demo.

Before you redeploy, it is necessary to remove the corresponding Docker stack and delete the associated volumes.

ssh hpe-ucp02

docker stack rm splunk_demo
Removing service splunk_demo_splunkenterprise
Removing network splunk_demo_default

docker volume ls | grep splunk
vsphere:latest splunk_demo_vsplunk-opt-splunk-etc@Docker_HPE
vsphere:latest splunk_demo_vsplunk-opt-splunk-var@Docker_HPE

docker volume rm splunk_demo_vsplunk-opt-splunk-etc@Docker_HPE
splunk_demo_vsplunk-opt-splunk-etc@Docker_HPE

docker volume rm splunk_demo_vsplunk-opt-splunk-var@Docker_HPE
splunk_demo_vsplunk-opt-splunk-var@Docker_HPE

Then re-run the playbook on your Ansible node.

ansible-playbook -i vm_hosts playbooks/splunk_demo.yml --vault-password-file .vault_pass

http://www.hpe.com

Deployment Guide Page 68

Deploying Prometheus and Grafana on Kubernetes
Monitoring Kubernetes with Prometheus and Grafana
Monitoring a Kubernetes cluster with Prometheus is a natural choice as Kubernetes components themselves are instrumented with Prometheus
metrics, therefore those components simply have to be discovered by Prometheus and most of the cluster is monitored.

The solution uses the Prometheus Operator to deploy Prometheus and Grafana. The playbooks install kube-state-metrics and node-
exporter components, as well as supporting kubelet and apiserver metrics. Sample dashboards for Grafana are installed to help you
monitor your Kubernetes infrastructure.

The Prometheus Operator, shown in Figure 28, makes running Prometheus on top of Kubernetes as easy as possible, while preserving
Kubernetes-native configuration options. It introduces additional resources in Kubernetes to declare the desired state and configuration of
Prometheus. The Prometheus resource declaratively describes the desired state of a Prometheus deployment, while a ServiceMonitor
describes the set of targets to be monitored by Prometheus.

Figure 28. Prometheus Operator

Playbooks for installing Prometheus and Grafana on Kubernetes
Prerequisites
Before you run the playbook to install Prometheus and Grafana on Kubernetes, you need to ensure that you have already downloaded and
installed kubectl and set up your client bundle. Two convenience playbooks have been provided to make this process easier.

The playbook playbooks/install-kubectl.yml installs a specific version of kubectl based on the settings in your
group_vars/vars file.

http://www.hpe.com

Deployment Guide Page 69

The playbook playbooks/kube-prometheus.yml is used to deploy the Prometheus/Grafana stack on Kubernetes. It is a wrapper for a
number of separate playbooks outlined below.

• playbooks/kube-prometheus/operator.yml

• playbooks/kube-prometheus/kube-state-metrics.yml

• playbooks/kube-prometheus/node-exporter.yml

• playbooks/kube-prometheus/monitors.yml

• playbooks/kube-prometheus/prometheus.yml

• playbooks/kube-prometheus/grafana.yml

You can choose not to install certain components, such as node-exporter or kube-state-metrics, by commenting out the appropriate
line in the wrapper playbook.

Prometheus Operator
The Prometheus Operator makes running Prometheus on top of Kubernetes as easy as possible, while preserving Kubernetes-native
configuration options. For more information on Prometheus Operator, see https://coreos.com/operators/prometheus/docs/latest/user-
guides/getting-started.html.

The playbook playbooks/kube-prometheus/operator.yml installs the operator itself.

Kube state metrics
kube-state-metrics is a simple service that listens to the Kubernetes API server and generates metrics about the state of the objects. It is
not focused on the health of the individual Kubernetes components, but rather on the health of the various objects inside, such as deployments,
nodes and pods. For more information on kube-state-metrics, see https://github.com/kubernetes/kube-state-metrics.

The playbook playbooks/kube-prometheus/kube-state-metrics.yml installs kube-state-metrics on all UCP, DTR and Kubernetes
worker nodes.

Node exporter
The node-exporter provides an overview of cluster node resources including CPU, memory and disk utilization and more. For more information
on node-exporter, see https://github.com/prometheus/node_exporter.

The playbook playbooks/kube-prometheus/node-exporter.yml installs node-exporter as a set of Docker containers on all UCP,
DTR and Kubernetes worker nodes. Port 9100 is opened in the firewall on each node where it is installed.

Monitors
While all the other Kubernetes components run on top of Kubernetes itself, kubelet and apiserver do not, and so they just need service
monitors to access these metrics.

The playbook playbooks/kube-prometheus/monitors.yml installs Service Monitors for kubelet and apiserver.

cAdvisor
Support for cAdvisor is built-in to Kubernetes, so cAdvisor metrics will automatically be available within Prometheus, without any other
configuration required.

Note
Because Docker EE provides a hosted version of Kubernetes, it is not possible to access metrics for kube-scheduler and kube-
controller-manager.

Prometheus
For convenience, the playbook sets up a NodePort so that the Prometheus UI can be accessed on port 33090, as shown in the following code
extract:

http://www.hpe.com
https://coreos.com/operators/prometheus/docs/latest/user-guides/getting-started.html
https://coreos.com/operators/prometheus/docs/latest/user-guides/getting-started.html
https://github.com/kubernetes/kube-state-metrics
https://github.com/prometheus/node_exporter

Deployment Guide Page 70

kubectl -n monitoring patch svc prometheus-k8s --type='json' -p
'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

kubectl -n monitoring patch svc prometheus-k8s --type='json' -p '[{"op": "add",
"path":"/spec/ports/0/nodePort", "value":33090}]'

On a production system, it is likely that you will want to remove this NodePort. The following code segment shows how you can use the patch
command to remove the NodePort.

kubectl -n monitoring patch svc prometheus-k8s --type='json' -p '[{"op": "remove",
"path":"/spec/ports/0/nodePort"}]'

kubectl -n monitoring patch svc prometheus-k8s --type='json' -p '[{"op": "remove",
"path":"/spec/type"}]'

Grafana
For convenience, the playbook sets up a NodePort so that the Grafana UI can be access on the port 33030, as shown in the following code
extract:

kubectl -n monitoring patch svc grafana --type='json' -p '[{"op":"replace","path":"/spec/type",
"value":"NodePort"}]'

kubectl -n monitoring patch svc grafana --type='json' -p '[{"op": "add",
"path":"/spec/ports/0/nodePort", "value":33030}]'

On a production system, it is likely that you will want to remove this NodePort. The following code segment shows how you can use the patch
command to remove the NodePort.

kubectl -n monitoring patch svc grafana --type='json' -p '[{"op": "remove",
"path":"/spec/ports/0/nodePort"}]'

kubectl -n monitoring patch svc grafana --type='json' -p '[{"op": "remove", "path":"/spec/type"}]'

Teardown
The playbook playbooks/kube-prometheus-teardown.yml removes the installed Prometheus\Grafana stack.

Prometheus UI
The Prometheus UI is available via your UCP, DTR or Kubernetes worker nodes, using HTTP on port 33090, for example,

http://hpe-ucp01.am2.cloudra.local:33090

To see what services are being monitored, access the service discovery page, via Status -> Service Discovery, or using the
/service-discovery endpoint:

http://hpe2-ucp01.am2.cloudra.local:33090/service-discovery

The monitored services are listed as shown in Figure 29.

http://www.hpe.com

Deployment Guide Page 71

Figure 29. Prometheus service discovery

To see the status for the monitored services, access the targets page via Status -> Targets or using the endpoint /targets.

http://hpe2-ucp01.am2.cloudra.local:33090/targets

The status of the various monitors are displayed, as shown in Figure 30.

Figure 30. Prometheus targets

http://www.hpe.com

Deployment Guide Page 72

To see all the metrics available, click on Graph or use the endpoint /graph:

http://hpe2-ucp01.am2.cloudra.local:33090/graph

Click on the drop-down titled “- insert metric at cursor –“ to see all the metrics that are available to Prometheus as shown in Figure
31.

Figure 31. Prometheus metrics

Node Exporter
Metrics specific to the Node Exporter are prefixed with node_ and include metrics like node_cpu_seconds_total and
node_exporter_build_info. Table 21 below lists some example expressions.

Table 21. Sample Node Exporter metrics

Metric Meaning

rate(node_cpu_seconds_total{mode="system"}[1m]) The average amount of CPU time spent in system mode, per second, over
the last minute (in seconds)

node_filesystem_avail_bytes The filesystem space available to non-root users (in bytes)

rate(node_network_receive_bytes_total[1m]) The average network traffic received, per second, over the last minute (in
bytes)

http://www.hpe.com

Deployment Guide Page 73

More information on the use of node-exporter metrics is available at https://github.com/prometheus/node_exporter.

cAdvisor
cAdvisor is an open source container resource usage and performance analysis agent. It is purpose-built for containers and supports Docker
containers natively. In Kubernetes, cAdvisor is integrated into the Kubelet binary. cAdvisor auto-discovers all containers in the machine and
collects CPU, memory, filesystem, and network usage statistics. cAdvisor also provides the overall machine usage by analyzing the ‘root’ container
on the machine.

Kubelet exposes a simple cAdvisor UI for containers on a machine, via the default port 4194. However, this feature has been marked deprecated
in v1.10 and completely removed in v1.12. For more inforation on how upcoming releases will reduce the set of metrics exposed by the
kubelet, see the relevant issue page at https://github.com/kubernetes/kubernetes/issues/68522.

The Kubelet also starts an internal HTTP server on port 10255 and exposes endpoints including /metrics and /metrics/cadvisor. As
this release of Express Containers uses Kubernetes 1.11, it is able to use this feature. In future releases, it will be necessary to deploy cAdvisor as
a DaemonSet for access to the cAdvisor UI.

Table 22 lists some example cAdvisor expressions.

Table 22. Sample cAdvisor metrics

Expression Description For

rate(container_cpu_usage_seconds_total{name="redis"}[1m]) The cgroup's CPU usage in the last minute (split up
by core)

The redis container

container_memory_usage_bytes{name="redis"} The cgroup's total memory usage (in bytes) The redis container

rate(container_network_transmit_bytes_total[1m]) Bytes transmitted over the network by the
container per second in the last minute

All containers

rate(container_network_receive_bytes_total[1m]) Bytes received over the network by the container
per second in the last minute

All containers

A full listing of cAdvisor-gathered container metrics exposed to Prometheus can be found in the cAdvisor documentation at
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md.

Grafana UI
The Grafana UI is available via your UCP, DTR or Kubernetes worker nodes, using HTTP on port 33030, for example,

http://hpe-ucp01.am2.cloudra.local:33030

The default username and password for Grafana is admin/admin. The first time you login, you will be asked to reset the default admin
password.

A number of dashboards are installed by default. The following figues illustrate some of the dashboard provided.

http://www.hpe.com
https://github.com/prometheus/node_exporter
https://github.com/kubernetes/kubernetes/issues/68522
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

Deployment Guide Page 74

Figure 32. Compute resources dashboard

Figure 33. USE method cluster dashboard

http://www.hpe.com

Deployment Guide Page 75

Figure 34. USE method node dashboard

Figure 35. Nodes dashboard

http://www.hpe.com

Deployment Guide Page 76

Deploying Prometheus and Grafana on Docker swarm
Monitoring with Prometheus and Grafana
The solution can be configured to enable the use of Prometheus and Grafana for monitoring. In this setup, there is no need for native installs and
all the required monitoring software runs in containers, deployed as either services or stacks. The load among the three hosts will be shared as
per Figure 36.

Figure 36. Solution architecture: Linux workers with Prometheus and Grafana

The Prometheus and Grafana services are declared in a Docker stack as replicated services with one replica each, so that if they fail, Docker EE
will ensure that they are restarted on one of the UCP VMs. cAdvisor and node-exporter are declared in the same stack as global services,
so Docker EE will ensure that there is always one copy of each running on every machine in the cluster.

Note
Prometheus and Grafana functionality is not turned on by default in this solution - see the section on Prometheus and Grafana configuration for
more information on how to enable these tools. Additionally, this functionality will not work for the Windows worker nodes in your environment at
present.

http://www.hpe.com

Deployment Guide Page 77

Playbooks for installing Prometheus and Grafana on Docker swarm
The following playbooks are used to deploy Prometheus and Grafana on Docker RHEL nodes.

• playbooks/install_logspout.yml installs and configures Logspout on all Docker nodes. Logspout is responsible for sending logs
produced by containers running on the Docker nodes to the central logger VM. By default, this playbook is commented out in site.yml.

• playbooks/config_monitoring.yml configures a monitoring system for the Docker environment based on Grafana, Prometheus,
cAdvisor and node-exporter Docker containers. By default, this playbook is commented out in site.yml, so if you want to use the solution to
automatically deploy a Prometheus/Grafana monitoring system, you must explicitly uncomment both this and the
playbooks/install_logspout.yml playbook.

Prometheus and Grafana configuration
All monitoring-related variables for Prometheus and Grafana are described in Table 23. The variables determine the versions of various software
tools that are used and it is recommended that the values given below are used.

Table 23. Monitoring variables

Variable Description

cadvisor_version v0.28.3

node_exporter_version v1.15.0

prometheus_version V2.3.2

grafana_version 5.2.3

logspout_version v3.2.4

prom_persistent_vol_name The name of the volume which will be used to store the monitoring data. The volume is created using the vSphere Docker Volume plugin.

prom_persistent_vol_size The size of the volume which will hold the monitoring data. The exact syntax is dictated by the vSphere Docker Volume plugin. The default
value is 10GB.

Accessing Grafana UI
The Grafana UI is available at the UCP VIP, using HTTP on port 3000, for example,

http://hpe-ucpvip.am2.cloudra.local:3000

http://www.hpe.com

Deployment Guide Page 78

The default username and password for Grafana is admin/admin. The first time you login, you will be asked to reset the default admin
password. Select the Docker Swarm Monitor dashboard that has already been loaded by the playbooks, as shown in Figure 37 and Figure 38.

Figure 37. Docker Swarm Monitor dashboard

Figure 38. Docker Swarm Monitor dashboard

http://www.hpe.com

Deployment Guide Page 79

Backup and restore
This Reference Configuration provides playbooks and scripts to help you back up and restore:

• Docker UCP and DTR

• Docker volumes

Backup and restore UCP and DTR
The playbooks provided in this solution implement the backup and restore procedures as they are described in the Docker documentation at
https://docs.docker.com/enterprise/backup/. The solution follows the recommendations in the Docker best practices document at
https://success.docker.com/article/backup-restore-best-practices.

Note
It is important that you make copies of the backed up data and that you store the copies in a separate physical location. You must also recognize
that the backed up data contains sensitive information such as private keys and so it is important to restrict access to the generated files.
However, the playbooks do not backup the sensitive information in your group_vars/vault file so you should make sure to keep track of the
credentials for the UCP Administrator.

Warning
The restore procedures do not restore swarm data. You should follow infrastructure as code (IaC) guidelines and maintain your service, stack and
network definitions using source code or configuration management tools. You must also ensure that you safely manage the credentials of your
administration accounts, as existing UCP Client bundles will not work when you restore UCP on a new swarm.

http://www.hpe.com
https://docs.docker.com/enterprise/backup/
https://success.docker.com/article/backup-restore-best-practices

Deployment Guide Page 80

Backup UCP and DTR
The playbooks support backing up the swarm, UCP, DTR metadata and DTR images.

Backup configuration variables
Table 24 shows the variables related to backing up UCP and DTR. All these variables are defined in the file group_vars/backups. All the data
that is backed up is streamed over an SSH connection to the backup server. Currently, the playbooks only support the use of the Ansible box as
the backup server.

Table 24. Backup variables

Variable File Description

backup_server group_vars/backups Currently, the playbooks only support the use of the Ansible box as the backup server.

backup_dest group_vars/backups This variable should point to an existing folder on your Ansible box where the root user has write access.
All the backups will be stored in this folder. For example, /root/backups

backup_passphrase group_vars/vault This variable is used to encrypt the tar file with a passphrase that must be at least 12 characters long.

swarm_offline_backup group_vars/backups This variable is commented out by default. More information on this variable is provided below.

Backing up the swarm
When you back up the swarm, your services and stack definitions are backed up together with the networks definitions. However, Docker
volumes or their contents will not be backed up. (If Docker volumes are defined in stacks, they will be re-created when you restore the stacks, but
their content will be lost). You can back up the swarm using the playbook named backup_swarm.yml which is located in the playbooks
folder on your Ansible server. The playbook is invoked as follows:

ansible-playbook -i vm_hosts playbooks/backup_swarm.yml

This playbook creates two archives in the folder specified by the variable backup_dest in group_vars/backups. By default, the file is
named using the following pattern:

<backup_dest>/backup_swarm_<vmname>_<timestamp>.tgz
<backup_dest>/backup_swarm_<vmname>_<timestamp>.vars.tgz

<vmname> is the name of the host (in the inventory) that was used to take the backup, and <timestamp> is the time at which the backup was
taken. The file with the extension .vars.tgz contains information regarding the system that was backed up.

You can override the generated file name by defining the variable backup_name on the command line when running the playbook. In the
example below:

ansible-playbook -i vm_hosts playbooks/backup_swarm.yml -e backup_name=my_swarm_backup

The generated files won't have <vmname> or <timestamp> appended:

<backup_dest>/my_swarm_backup.tgz
<backup_dest>/my_swarm_backup.vars.tgz

Warning
Online versus offline backups: By default, the playbook performs online backups. You can take offline backups by setting the variable
swarm_backup_offline to "true". The playbook will then stop the Docker daemon on the machine used to take the backup (a manager or
UCP node). Before it does so, the playbook will verify that enough managers are running in the cluster to maintain the quorum. If this is not the
case, the playbook will exit with an error. For more information, see the Docker documentation at
https://docs.docker.com/engine/swarm/admin_guide/#recover-from-disasterv

http://www.hpe.com
https://docs.docker.com/engine/swarm/admin_guide/#recover-from-disasterv

Deployment Guide Page 81

Backing up the Universal Control Plane (UCP)
When you backup UCP, you save the data/metadata outlined in Table 25.

Table 25. UCP data backed up

Data Description

Configurations The UCP cluster configurations, as shown by docker config ls, including Docker EE license and swarm and client CAs

Access control Permissions for team access to swarm resources, including collections, grants, and roles

Certificates and keys The certificates, public keys, and private keys that are used for authentication and mutual TLS communication

Metrics data Monitoring data gathered by UCP

Organizations Your users, teams, and orgs

Volumes All UCP named volumes, which include all UCP component certs and data

To make a backup of UCP, use playbook/backup_ucp.yml as follows:

ansible-playbook -i vm_host playbooks/backup_ucp.yml

This playbook creates two archives in the folder specified by the variable backup_dest in group_vars/backups. By default, the files are
named using the following pattern:

<backup_dest>/backup_ucp_<ucpid>_<vmname>_<timestamp>.tgz
<backup_dest>/backup_ucp_<ucpid>_<vmname>_<timestamp>.vars.tgz

<ucpid> is the ID of the UCP instance, <vmname> is the name of the host (in the inventory) that was used to take the backup, and
<timestamp> is the time at which the backup was taken. The file with the extension .vars.tgz contains information regarding the system
which was backed up.

You can override the generated file name by defining the variable backup_name on the command line when running the playbook. In the
example below:

ansible-playbook -i vm_hosts playbooks/backup_ucp.yml -e backup_name=my_ucp_backup

The generated files won't have <vmname> or <timestamp> appended:

<backup_dest>/my_ucp_backup.tgz
<backup_dest>/my_ucp_backup.vars.tgz

Warning
To create a consistent backup, the backup command temporarily stops the UCP containers running on the node where the backup is being
performed. User resources, such as services, containers, and stacks are not affected by this operation and will continue to operate as expected.
Any long-lasting docker exec, docker logs, docker events, or docker attach operations on the affected manager node will be
disconnected.

For more information on UCP backup, see the Docker documentation at https://docs.docker.com/datacenter/ucp/3.0/guides/admin/backups-
and-disaster-recovery/

http://www.hpe.com
https://docs.docker.com/datacenter/ucp/2.2/guides/architecture/#volumes-used-by-ucp
https://docs.docker.com/datacenter/ucp/3.0/guides/admin/backups-and-disaster-recovery/
https://docs.docker.com/datacenter/ucp/3.0/guides/admin/backups-and-disaster-recovery/

Deployment Guide Page 82

Backing up the Docker Trusted Registry (DTR)
When you backup DTR, you save the data/metadata outlined in Table 26.

Table 26. DTR data backed up

Data Backed up? Description

Configurations yes DTR settings

Repository metadata yes Metadata like image architecture and size

Access control to repos and images yes Data about who has access to which images

Notary data yes Signatures and digests for images that are signed

Scan results yes Information about vulnerabilities in your images

Certificates and keys yes TLS certificates and keys used by DTR

Image content no Needs to be backed up separately, depends on DTR configuration

Users, orgs, teams no Create a UCP backup to backup this data

Vulnerability database no Can be re-downloaded after a restore

To make a backup of DTR metadata, use playbook/backup_dtr_metadata.yml

ansible-playbook -i vm_host playbooks/backup_dtr_metadata.yml

This playbook creates two archives in the folder specified by the variable backup_dest in group_vars/backups. By default, the file is
named using the following pattern:

<backup_dest>/backup_dtr_meta_<replica_id>_<vmname>_<timestamp>.tgz
<backup_dest>/backup_dtr_meta_<replica_id>_<vmname>_<timestamp>.vars.tgz

<replica_id> is the ID of the DTR replica that was backed up, <vmname> is the name of the host (in the inventory) that was used to take the
backup, and <timestamp> is the time at which the backup was taken. The file with the extension .vars.tgz contains information regarding
the system that was backed up.

You can override the generated file name by defining the variable backup_name on the command line when running the playbook. In the
example below:

ansible-playbook -i vm_hosts playbooks/backup_dtr_metadata.yml -e backup_name=my_dtr_metadata_backup

The generated files won't have <vmname> or <timestamp> appended:

<backup_dest>/my_dtr_metadata_backup.tgz
<backup_dest>/my_dtr_metadata_backup.vars.tgz

For more information on DTR backups, see the Docker documentation at https://docs.docker.com/datacenter/dtr/2.5/guides/admin/backups-
and-disaster-recovery/

Backing up DTR data (images)
To make a backup of the images that are inventoried in DTR and stored on the NFS server, use playbooks/backup_dtr_images.yml

ansible-playbook -i vm_host playbooks/backup_dtr_images.yml

This playbook creates two archives in the folder specified by the variable backup_dest in group_vars/backups. By default, the files are
named using the following pattern:

<backup_dest>/backup_dtr_data_<replica_id>_<vmname>_<timestamp>.tgz
<backup_dest>/backup_dtr_data_<replica_id>_<vmname>_<timestamp>.vars.tgz

http://www.hpe.com
https://docs.docker.com/datacenter/dtr/2.5/guides/admin/backups-and-disaster-recovery/
https://docs.docker.com/datacenter/dtr/2.5/guides/admin/backups-and-disaster-recovery/

Deployment Guide Page 83

<replica_id> is the ID of the DTR replica that was backed up, <vmname> is the name of the host (in the inventory) that was used to take the
backup, and <timestamp> is the time at which the backup was taken.

You can override the generated file names by defining the variable backup_name on the command line when running the playbook, as shown in
the example below:

ansible-playbook -i vm_hosts playbooks/backup_dtr_images.yml -e backup_name=my_dtr_data_backup

The generated files won't have <vmname> or <timestamp> appended:

<backup_dest>/my_dtr_data_backup.tgz
<backup_dest>/my_dtr_data_backup.vars.tgz

For more information on DTR backups, see the Docker documentation at https://docs.docker.com/datacenter/dtr/2.5/guides/admin/backups-
and-disaster-recovery/

Backing up other metadata, including passwords
The backup playbooks do not backup the sensitive data in your group_vars/vault file. The information stored in the .vars.tgz files
includes backups of the following files:

• vm_hosts, a copy of the vm_hosts file at the time the backup was taken

• vars, a copy of your group_vars/vars file at the time the backup was taken

• meta.yml, a generated file containing information pertaining to the backup

The meta.yml file contains the following information:

backup_node="<node that took the backup>"
replica_id="<ID of DTR replica if DTR backup>"
backup_source=""
ucp_version="<UCP version if UCP backup>"
dtr_version="<DTR version of DTR backup>"

Backup Utility
The script backup.sh can be used to take a backup of the swarm, UCP, DTR metadata and the DTR images in one go. You can pass this script
an argument (tag) that will be used to prefix the backup filenames, thereby overriding the default naming. Table 27 shows the file names
produced by backup.sh based on the argument passed in the command line.

Table 27. Backup utility

Example Command line Generated filenames

Default ./backup.sh backup_swarm_<vmname>_<timestamp>.tgz,
backup_ucp_<ucpid>_<vmname>_<timestamp>.tgz,
backup_dtr_meta_<replica_id>_<vmname>_<timestamp>.tgz,
backup_dtr_data_<replica_id>_<vmname>_<timestamp>.tgz
and the corresponding .vars.tgz files

Custom ./backup.sh my_backup my_backup_swarm.tgz, my_backup_ucp.tgz,
my_backup_dtr_meta.tgz, my_backup_dtr_data.tgz, and the
corresponding .vars.tgz files

Date ./backup.sh $(date '+%Y_%m_%d_%H%M%S') <date>_swarm.tgz, <date>_ucp.tgz, <date>_dtr_meta.tgz,
<date>_dtr_data.tgz, and the corresponding .vars.tgz files

In addition, the backup.sh script accepts an optional switch that will let you specify the location of the password file that will be passed to the
ansible-playbook commands in the script. This is required if you have encrypted the group_vars/vault file. The general syntax for this
script is as follows:

./backup.sh [-v <Vault Password File>] [tag]

http://www.hpe.com
https://docs.docker.com/datacenter/dtr/2.5/guides/admin/backups-and-disaster-recovery/
https://docs.docker.com/datacenter/dtr/2.5/guides/admin/backups-and-disaster-recovery/

Deployment Guide Page 84

Related playbooks
• playbooks/backup_swarm.yml is used to back up the swarm data

• playbooks/backup_ucp.yml is used to back up UCP

• playbooks/backup_dtr_meta.yml is used to back up DTR metadata

• playbooks/backup_dtr_images.yml is used to back up DTR images

Restoring your cluster after a disaster
The playbooks address a disaster recovery scenario where you have lost your entire cluster and all the VMs. Other scenarios and how to handle
them are described in the Docker documentation including the following scenarios:

• You have lost one UCP instance but your cluster still has the quorum. The easiest way is to recreate the missing UCP instance from scratch.

• You have lost the quorum in your UCP cluster but there is still one UCP instance running.

• You have lost one instance of DTR but still have a quorum of replicas. The easiest way is to recreate the missing DTR instance from scratch.

• You have lost the quorum of your DTR cluster but still have one DTR instance running.

Before you restore
Step 1. Retrieve the backup files using your chosen backup solution and save them to a folder on your Ansible server. If you have used
timestamps in the naming of your backup files, you can use them to determine the chronological order. If you used the backup.sh script
specifying a date prefix, you can use that to identify the matching set of backup files. You should choose the files in the following reverse
chronological order, from the most recent to the oldest file. Make sure you restore both the *.tgz and the *.vars.tgz files.

 DTR images backup

 DTR metadata backup

 UCP backup

 Swarm backup

In this example, we will assume a set of backup files stored in /root/restore that were created specifying a date prefix. These will have
names like 2018_04_17_151734_swarm.tgz, 2018_04_17_151734_ucp.tgz, etc and the corresponding .vars.tgz files.

Step 2: Retrieve the DTR replica ID, the DTR version and the UCP version

To retrieve the ID of the replica that was backed up, as well as the version of DTR, you need to extract the data from the .vars.tgz file
associated with the archive of the DTR metadata. You can retrieve this as follows:

tar -Oxf /root/restore/2018_04_17_151734_dtr_meta.vars.tgz meta.yml
backup_node="hpe-dtr01"
replica_id="ad5204e8a4d0"
backup_source=""
ucp_version=""
dtr_version="2.4.3"

tar -Oxf /root/restore/2018_04_17_151734_ucp.vars.tgz meta.yml
backup_node="hpe-ucp01"
replica_id=""
backup_source=""
ucp_version="3.0.4"
dtr_version=""

Take note of the replica ID (ad5204e8a4d0), the version of DTR (2.5.3) and the version of UCP (3.0.4).

Step 3: Populate the group_vars/backups file

http://www.hpe.com

Deployment Guide Page 85

backup_swarm: "/root/restore/2018_04_17_151734_swarm.tgz"
backup_ucp: "/root/restore/2018_04_17_151734_ucp.tgz"
backup_dtr_meta: "/root/restore/2018_04_17_151734_dtr_meta.tgz"
backup_dtr_data: "/root/restore/2018_04_17_151734_dtr_data.tgz"
backup_dtr_id: "ad5204e8a4d0"
backup_dest: "/root/backups"
backup_server: <IP of your ansible box>

You should populate your group_vars/backups file as above, with the backup_dtr_id variable containing the value you retrieved in the
preceding step as replica_id="ad5204e8a4d0".

Step 4: Verify that your group_vars/vars file specifies the correct versions of DTR and UCP.

The playbooks use the versions of UCP and DTR as specified in your group_vars/vars file to restore your backups. You must ensure that the
versions specified in your current group_vars/vars file correspond to the versions in the backups as determined above.

cat group_vars/vars | grep dtr_version
dtr_version: '2.5.3'

cat group_vars/vars | grep ucp_version
ucp_version: '3.0.4'

Step 5: Restore UCP admin credentials if required

You must ensure that the UCP admin credentials in your current group_vars/vars file are those that were in effect when you generated the
backup files. If they have changed since then, you must restore the original credentials for the duration of the restore procedure.

Step 6: Restore your inventory (vm_hosts)

Your inventory must reflect the environment that was present when the backup files were created. You can find a copy of the inventory as it was
when the backup was taken in the *.vars.tgz files.

Restore UCP and DTR

Warning
This procedure is aimed at restoring a cluster after a disaster. It assumes you have lost all the VMs in your cluster and want to redeploy using
data that you backed up earlier. The solution follows Docker best practice, which means the swarm artifacts are not restored. You will need to
restore your Docker volumes and your applications (stacks and services) when this procedure is complete.

 Ensure that you have completed all the preliminary steps as outlined in the section Before you restore.

 Run the restore playbook

ansible-playbook -i vm_hosts restore.yml

 Reload your Docker licence, using the Docker UCP UI under Admin Settings -> Licence or directly by using the route
/manage/settings/license.

 If you are using the image scanning functionality in DTR, you will need to re-download the vulnerability database. For more information, see
the Docker documentation here.

You are now ready to restore your Docker volumes and your applications.

http://www.hpe.com
https://docs.docker.com/datacenter/dtr/2.4/guides/admin/configure/set-up-vulnerability-scans/#get-the-security-scanning-license

Deployment Guide Page 86

Restore DTR metadata and DTR images

Note
This procedure restores DTR metadata and images and assumes you have lost all the DTR VMs in your cluster. It will redeploy using the DTR
data that you backed up earlier and will also restore the images if the folder exported by the NFS VM is empty.

 Ensure that you have completed all the preliminary steps as outlined in the section Before you restore. In this scenario, you need the archives
for the DTR metadata and the DTR images.

 Ensure that all the DTR VMs listed in your inventory are destroyed, using the vSphere Web Client to delete them if required. If you want to
restore the DTR images you should also delete the NFS VM.

 Remove the DTR nodes from the swarm by running the docker node rm <DTR node> command on a UCP node for each DTR node in
your cluster. The following example shows the sequence of commands to use to remove the DTR nodes:

docker node ls
ID HOSTNAME STATUS AVAILABILITY
aiz… * hpe-ucp02.cloudra.local Ready Active
gvf… hpe-dtr01.cloudra.local Down Active
ir4… hpe-ucp03.cloudra.local Ready Active
mwf… hpe-dtr02.cloudra.local Down Active
oqy… hpe-ucp01.cloudra.local Ready Active
xqe… hpe-worker01.cloudra.local Ready Active
zdu… hpe-dtr03.cloudra.local Down Active

docker node rm hpe-dtr01.cloudra.local
hpe-dtr01.cloudra.local
docker node rm hpe-dtr02.cloudra.local
hpe-dtr02.cloudra.local
docker node rm hpe-dtr03.cloudra.local
hpe-dtr03.cloudra.local

docker node ls
ID HOSTNAME STATUS AVAILABILITY
aiz… hpe-ucp02.cloudra.local Ready Active
ir4… hpe-ucp03.cloudra.local Ready Active
oqy… * hpe-ucp01.cloudra.local Ready Active
xqe… hpe-worker01.cloudra.local Ready Active

 Run the restore script:

./restore_dtr.sh

 If you are using the image scanning functionality in DTR, you will need to re-download the vulnerability database. For more information, see
the Docker documentation here.

Related playbooks
• playbooks/restore_swarm.yml is used to restore the swarm data

• playbooks/restore_dtr_meta.yml is used to restore DTR metadata

• playbooks/restore_dtr_images.yml is used to restore DTR images

http://www.hpe.com
https://docs.docker.com/datacenter/dtr/2.4/guides/admin/configure/set-up-vulnerability-scans/#get-the-security-scanning-license

Deployment Guide Page 87

HPE SimpliVity backups
HPE SimpliVity functionality can be used to backup and restore Docker persistent volumes.

Backup and restore Docker persistent volumes
In order to restore a Docker volume, you need to restore a special VM that has been deployed for the sole purpose of backing up Docker
volumes. There is one such VM for each datastore defined in the datastores array in the group_vars/vars file. By default, a single
datastore is specified in the playbooks:

datastores: ['Docker_HPE']

Note
The use of a single datastore is recommended. If you have configured multiple datastores, you need to understand and keep track of how your
Docker volumes are distributed across the datastores.

The name of the special VM follows the pattern <prefix>-in-dockervols-<Datastore> where

• <prefix> is the value of the variable dummy_vm_prefix from the file group_vars/vars

• <Datastore> is the name of the datastore

For example, based on the default values in the scripts, the VM name would be hpe-VM-in-dockervols-Docker_HPE.

Create a Docker volume
A single Docker volume will have been created for Prometheus using the vSphere driver as part of the initial deployment. To see this volume, use
the docker volume ls command on one of the Docker nodes, and limit the results to those volumes created using the vSphere driver.

docker volume ls | grep vsphere
vsphere:latest prom_hpe-db-data@Docker_HPE

To create a Docker volume named test_01, you can use the docker volume create command specifying the vSphere driver:

docker volume create -d vsphere test_01
test_01

You can check that the volume exists using the docker volume ls command:

docker volume ls | grep vsphere
vsphere:latest prom_hpe-db-data@Docker_HPE
vsphere:latest test_01@Docker_HPE

You can attach a container to the volume and then add data to it by creating a text file with some arbitrary content:

docker run -it --rm -v test_01:/tmp alpine sh -c "echo some test data here > /tmp/foo.txt"

If this is the first time you have used the alpine image, you may see additional output relating to download of image layers:

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
88286f41530e: Already exists
Digest: sha256:f006ecbb824d87947d0b51ab8488634bf69fe4094959d935c0c103f4820a417d
Status: Downloaded newer image for alpine:latest

The container will exit once the shell command has run and any unnamed volumes will be removed. However, the named volume
test_01:/tmp will persist. To check that the data is still available after the container exited, spin up a new container and try to retrieve the
data:

http://www.hpe.com

Deployment Guide Page 88

docker run -it --rm -v test_01:/tmp alpine sh -c "cat /tmp/foo.txt"
some test data here

Automated backup
By default, the special VM and any Docker volume in the dockvols folder are backed up every hour. This is controlled by the following settings
in the group_vars/vars file.

backup_policies:
 - name: 'hpe-gold'
 days: 'All'
 start_time: '00:00'
 frequency: '60'
 retention: '43200'
dummy_vm_prefix: 'hpe-VM'
docker_volumes_policy: 'hpe-gold'

The backup policy hpe-gold is assigned to the special VM that is used to back up the Docker volumes. This policy specifies that a backup is
taken every hour (frequency: '60' means sixty minutes) while the backup is retained for one month (retention: '43200' means
43200 minutes or thirty days).

Manual backup
Rather than waiting for an automated backup to take place, you can create a backup immediately. Right-click on the special VM, in this case
hpe-VM-in-dockervols-Docker_HPE, select All HPE SimpliVity Actions and choose Backup Virtual Machine as shown in
Figure 39.

http://www.hpe.com

Deployment Guide Page 89

Figure 39. Backup virtual machine

http://www.hpe.com

Deployment Guide Page 90

You can specify a backup name, in this case manual_backup_test_01, as shown in Figure 40.

Figure 40. Backup virtual machine details

Restore
Right-click on the special VM, in this case hpe-VM-in-dockervols-Docker_HPE. On the Configure tab, select HPE SimpliVity Search
Backups as shown in Figure 41.

Figure 41. Search backups

You can narrow the search based on the time of the backup. If you are restoring from an automatic backup, the name will be the timestamp of
the backup. If you are restoring from a manual backup, the name will be the one you specified earlier when creating the backup, in this case
manual_backup_test_01.

http://www.hpe.com

Deployment Guide Page 91

Right-click on the backup you wish to restore, as shown in Figure 42, and select Restore Virtual Machine.

Figure 42. Restore virtual machine

In the details screen, shown in Figure 43, you can choose a name for the new virtual machine and specify the datastore.

Figure 43. Restore virtual machine details

http://www.hpe.com

Deployment Guide Page 92

The name of the new virtual machine will default to a combination of the special VM name and a timestamp, in this instance hpe-VM-in-
dockervols-Docker_HPE-2018-11-26-20h47m01s. The datastore should be the one specified in the datastores array from the
group_vars/vars file. Click OK to restore the virtual machine.

Once the virtual machine has been restored, navigate to the datastore and locate the new VM in the file browser, as shown in Figure 44.

Figure 44. Browse for restored virtual machine

Navigate to the folder named 1111111-1111-1111-1111-... as shown in Figure 45. You will see files with names based on the Docker
volume name that you used at the start, in this instance test_01.vmdk and test_01-478...f1f.vmfd

Figure 45. Locate vmdk and vmfd files

http://www.hpe.com

Deployment Guide Page 93

You need to move these two files to the dockvols sub-directory named 1111111-1111-1111-1111-... in the same datastore. Right click on
the .vmdk file and choose Move to... as shown in Figure 46.

Figure 46. Move files

Set the destination folder to the dockvols sub-directory named 1111111-1111-1111-1111-... as shown in Figure 47.

Figure 47. Move to destination

http://www.hpe.com

Deployment Guide Page 94

It is only necessary to move the .vmdk file as the .vmfd file will automatically follow. The dockvols sub-directory named 1111111-1111-
1111-1111-... should now contain both files as shown in Figure 48.

Figure 48. Files moved to destination

Test the restore
You can check that the volume test_01 has been restored by using the docker volume ls command again.

docker volume ls | grep vsphere
vsphere:latest prom_hpe-db-data@Docker_HPE
vsphere:latest test_01@Docker_HPE

You can verify that the volume contains the correct data by spinning up a container and running a shell command:

docker run -it --rm -v test_01:/tmp alpine sh -c "cat /tmp/foo.txt"
some test data here

The data you entered in the text file, before performing the backup and deleting the volume, is available once again after restoring the volume.

http://www.hpe.com

Deployment Guide Page 95

Solution lifecycle management
Lifecycle management with respect to this solution refers to the maintenance and management of software and hardware of various components
that make up the solution stack. Lifecycle management is required to keep the solution up-to-date and ensure that the latest versions of the
software are running to provide optimal performance, security and to fix any existing defects within the product.

In this section, we will cover life cycle management of the different components that are used in this solution. The lifecycle of the following stacks
need to be maintained and managed:

• Monitoring Tools (Splunk or Prometheus and Grafana)

• Docker Enterprise Edition Environment

• Virtual Machine Operating systems

• HPE SimpliVity environment

The general practice and recommendation is to follow a bottom-up approach for updating all components of the environment and making sure
the dependencies are met. In our solution, we would start with HPE SimpliVity and end with the monitoring environment. If all components are
not being updated at the same time, the same approach can be followed – updating only the components that require updates while adhering to
the interdependencies of each component that is being updated.

HPE SimpliVity environment
The HPE SimpliVity environment is made up of proprietary HPE SimpliVity software, VMware software and HPE firmware. There are
interdependencies between the various components that need to be accounted for and are provided in the table below. The components in
Table 28 are part of the HPE SimpliVity environment that require lifecycle management.

In general, ensure that the software bits for the Arbiter and vSphere extension corresponding to an OmniStack release are used.

Table 28. HPE SimpliVity components

Order Component Dependency (compatibility) Download/Documentation

1 HPE SimpliVity Arbiter 1. HPE OmniStack SimpliVity OmniStack for vSphere Upgrade Guide

Download software bits from HPE’s support website.

http://www.hpe.com/support

2 HPE SimpliVity VMware
Plug-in

1. HPE SimpliVity Arbiter

2. HPE OmniStack

3 HPE Omnistack 1. HPE SimpliVity VMware Plug-in

2. HPE SimpliVity Arbiter

VMware Components
The solution in this deployment guide is built on VMware vSphere and leverages VMware ESXi and vCenter. For more information on upgrading
vSphere, see the VMware documentation, Introduction to vSphere Upgrade, at https://docs.vmware.com/en/VMware-
vSphere/6.5/com.vmware.vsphere.upgrade.doc/GUID-EB29D42E-7174-467C-AB40-DB37236FEAF5.html.

The VMware ESXi and vCenter versions must be compatible with each other and with the HPE OmniStack version that is running on the HPE
SimpliVity systems.

Table 29. VMware components

Order Component Dependency (compatibility) Download/Documentation

1 VMware vCenter
1. HPE OmniStack

2. VMware ESXi
VMware Upgrade for SimpliVity

2 VMware ESXi
1. HPE OmniStack

2. VMware vCenter

http://www.hpe.com
http://www.hpe.com/support
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.upgrade.doc/GUID-EB29D42E-7174-467C-AB40-DB37236FEAF5.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.upgrade.doc/GUID-EB29D42E-7174-467C-AB40-DB37236FEAF5.html
https://support.hpe.com/hpsc/doc/public/display?sp4ts.oid=1010292248&docLocale=en_US&docId=emr_na-a00028056en_us

Deployment Guide Page 96

HPE server software
HPE SimpliVity servers are based on HPE server platforms and require a compatible firmware version to function with HPE OmniStack Software,
as shown in Table 30.

Table 30. HPE server components

Order Component Dependency (compatibility) Download/Documentation

1 HPE Firmware 1. HPE OmniStack Software Firmware Upgrade for SimpliVity

vSphere Docker Volume Service Plug-in
vSphere Docker Volume service plug-in is part of an open source project by VMware that enables running stateful containers by providing
persistent Docker volumes leveraging existing storage technology from VMware. There are two parts to the plug-in, namely, client software and
server software (see Table 31). Every version of the plug-in that is released includes both pieces of software and it is imperative that the version
number installed on the client side and server side are the same.

When updating the Docker Volume service plug-in, ensure the ESXi version you are running is supported and that the client software is
compatible with the operating system.

Table 31. vSphere Docker Volume service components

Order Component Dependency (compatibility) Download/Documentation

1. Server Software 1. VMware ESXi

2. Docker EE
vSphere Docker Volume Service on GitHub

2. Client Software 1. VM Operating System

2. Docker EE

Red Hat Enterprise Linux operating system
This solution is built using Red Hat Enterprise Linux (see Table 32) as the base operating system. When upgrading the operating system on the
VMs, first verify that the OS version is compatible with Docker EE by looking at the Docker OS compatibility matrix.

Table 32. Operating system

Order Component Dependency (compatibility) Download/Documentation

1. Red Hat Enterprise Linux 1. Docker EE

2. vDVS client software plugin
RHEL

http://www.hpe.com
https://support.hpe.com/hpesc/public/home/result?qt=HPE+SimpliVity+380
http://vmware.github.io/vsphere-storage-for-docker/documentation/index.html
https://access.redhat.com/articles/11258

Deployment Guide Page 97

Docker EE Environment
Each release of Docker Enterprise Edition contains three technology components – UCP, DTR and the Docker Daemon or Engine. It is imperative
that the components belonging to the same version are deployed or upgraded together – see Table 33.

A banner will be displayed on the UI, as shown in Figure 49, when an update is available for UCP or DTR. You can start the upgrade process by
clicking on the banner.

Figure 49. Docker update notification

Table 33. Docker EE components

Order Component Dependency (compatibility) Download/Documentation

1. Docker Daemon/Engine 1. VM Operating System

2. vDVS plugin

3. Prometheus and Grafana

Docker Lifecycle Maintenance

Docker Compatibility Matrix
2. Universal Control Plane

3. Docker Trusted Registry

Monitoring Tools
To learn more about upgrading Splunk, see the relevant documentation at How to upgrade Splunk Enterprise.

The Sysdig agent runs as a container and the latest version is pulled from the Docker hub on first installation. Re-run the
install_sysdig.yml playbook to update to the newest version if required.

Prometheus and Grafana monitoring tools (see Table 34) run as containers within the Docker environment. Newer versions of these tools can be
deployed by pulling the Docker images from Docker Hub. Verify that the version of Prometheus that is being used is compatible with the version
of Docker EE.

Table 34. Monitoring tools: Prometheus and Grafana

Order Component Dependency (compatibility) Download/Documentation

1. Prometheus 1. Grafana

2. Docker EE 1. Prometheus Images on Docker Hub

2. Upgrading Grafana 2. Grafana 1. Prometheus

2. Docker EE

Summary
This document has described how to architect and deploy a Docker CaaS platform on HPE SimpliVity, using Ansible playbooks to quickly install
and deploy a production-ready container environment. This deployment includes a highly available container cluster with backup services and
persistent data support. This solution is ideal for customers looking to run containers on VMs to take advantage of the resource efficient usage of
virtual machines for Docker containers, and having the ability to run legacy and new container applications side-by-side. Customers deploying
Docker containers on a large scale, on Linux and Microsoft Windows, should consider HPE SimpliVity as the deployment infrastructure.

http://www.hpe.com
https://success.docker.com/Policies/Maintenance_Lifecycle
https://success.docker.com/Policies/Compatibility_Matrix
http://docs.splunk.com/Documentation/Splunk/7.0.3/Installation/HowtoupgradeSplunk
http://docs.grafana.org/installation/upgrading/

Deployment Guide Page 98

Appendix A: Bill of materials
The following BOM contains electronic license to use (E-LTU) parts. Electronic software license delivery is now available in most countries. HPE
recommends purchasing electronic products over physical products (when available) for faster delivery and for the convenience of not tracking
and managing confidential paper licenses. For more information, please contact your reseller or an HPE representative.

Note

Part numbers are at time of publication and subject to change. The bill of materials does not include complete support options or other rack and
power requirements. If you have questions regarding ordering, please consult with your HPE Reseller or HPE Sales Representative for more
details. hpe.com/us/en/services/consulting.html.

Table 35 shows a representative BOM for a single Gen10 HPE SimpliVity node, so you will need to multiply the quantities by the number of
nodes you intend to deploy. This solution uses three nodes, which is the minimum recommended by Docker and HPE.

Table 35. Bill of Materials

Quantity Part number Description

1 868703-B21 HPE ProLiant DL380 Gen10 8SFF Configure-to-order Server

1 826870-L21 HPE DL380 Gen10 Intel Xeon-Gold 6132 (2.6GHz/14-core/140W) FIO Processor Kit

1 826870-B21 HPE DL380 Gen10 Intel Xeon-Gold 6132 (2.6GHz/14-core/140W) Processor Kit

12 815100-B21 HPE 32GB (1x32GB) Dual Rank x4 DDR4-2666 CAS-19-19-19 Registered Smart Memory Kit

1 826687-B21 HPE DL38X Gen10 2SFF Premium HDD Front NVMe or Front/Rear SAS/SATA Kit

2 872475-B21 HPE 300GB SAS 12G Enterprise 10K SFF (2.5in) SC 3yr Wty Digitally Signed Firmware HDD

5 P04478-B21 HPE 1.92TB SATA 6G Read Intensive SFF (2.5in) SC 3yr Wty Digitally Signed Firmware SSD

1 870548-B21 HPE DL Gen10 x8/x16/x8 Riser Kit

1 P01366-B21 HPE 96W Smart Storage Battery (up to 20 Devices) with 145mm Cable Kit

1 804331-B21 HPE Smart Array P408i-a SR Gen10 (8 Internal Lanes/2GB Cache) 12G SAS Modular Controller

1 817709-B21 HPE Ethernet 10/25Gb 2-port 631FLR-SFP28 Adapter

1 867810-B21 HPE DL38X Gen10 High Performance Temperature Fan Kit

2 8830272-B21 HPE 1600W Flex Slot Platinum Hot Plug Low Halogen Power Supply Kit

Software Licenses
Licenses are required for the following software components:

• VMware

• Red Hat Linux

• Microsoft Windows Server

• Docker EE

• Splunk (optional software)

• Sysdig (optional software)

http://www.hpe.com
http://www.hpe.com/us/en/services/consulting.html

Deployment Guide Page 99

Appendix B: Using customer supplied certificates for UCP and DTR
Table 36 lists the variables used when configuring customer supplied certificates for UCP and DTR.

Table 36. Customer certs variables

Variable File Description

ucp_certs_dir group_vars/vars If ucp_certs_dir is not defined, UCP is installed with self-signed certificates and
DTR is installed with the --ucp-insecure-tls switch

If ucp_certs_dir is defined, this is a folder on the Ansible machine that must contain
3 files:

ca.pem, the root CA certificate in PEM format

cert.pem, the server certificate optionally followed by intermediate CAs

key.pem, the private key that comes with the cert.pem certificates

dtr_certs_dir group_vars/vars If dtr_certs_dir is not defined, DTR is installed with self-signed certificates

If dtr_certs_dir is defined, this is a folder on the Ansible machine that must contain
3 files:

ca.pem, the root CA certificate in PEM format

cert.pem, the server certificate optionally followed by intermediate CAs

key.pem, the private key that comes with the cert.pem certificates

Note
The installation will fail if the ca.pem, cert.pem and key.pem files cannot be found in the folders designated by dtr_certs_dir and
ucp_certs_dir or if they don't constitute valid certificates.

The certificates should specify the names of the FQDNs of the load balancer and the FQDNs of the VMs themselves. This applies to both the
UCP server certificate and the DTR server certificate.

Generating and testing certificates
In the example described here we have a root CA named Example root CA and an intermediate CA named Intermediate CA valid 3
years. The intermediate CA signs the server certificates for UCP and DTR.

Below is the start of the output displayed by running the openssl x509 utility against the ca.pem file (the root CA certificate).

[root@ansible ucp_certs]# openssl x509 -text -noout -in ca.pem|head -14
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 0d:07:ca:ea:00:37:77:6e:25:e0:18:3e:0e:db:80:0f:11:cb:1b:3f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=Example Root CA
 Validity
 Not Before: Apr 24 20:12:01 2018 GMT
 Not After : Apr 21 20:12:30 2028 GMT
 Subject: CN=Example Root CA
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)

Here is an excerpt from the example ca.pem file:

http://www.hpe.com

Deployment Guide Page 100

-----BEGIN CERTIFICATE-----
MIIFJTCCAw2gAwIBAgIUDQfK6gA3d24l4Bg+DtuADxHLGz8wDQYJKoZIhvcNAQEL
BQAwGjEYMBYGA1UEAxMPRXhhbXBsZSBSb290IENBMB4XDTE4MDQyNDIwMTIwMVoX
...
...
uXzYbCtU6Jt9B3fayAeWWswQv+jQSzuuA3re0M1x838iIZWDx93f4yLJWLJl7xsY
btvKBmqKDCsAqsQLFLnNj/JyYq4e9a6Xxcyn9FXNpzuEsfjfNGHn+csY+w3f987T
MNviy376xZbyAc1CV5kgmnZzjU5bDkgT8Q==
-----END CERTIFICATE-----

The cert.pem file should contain the server certificate itself, followed by your intermediate CA's certificate. The following example shows how
to extract the intermediate CA certificate from cert.pem and to save it to a file named intca.pem. Using the openssl x509 utility, you can
display the content of the intca.pem file in human readable form. This certificate was signed by the example CA above (Issuer =
'Example Root CA').

[root@ansible ucp_certs]# openssl x509 -text -noout -in intca.pem|head -14
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 6b:1e:0c:86:20:cf:f0:88:d2:52:0d:5d:b9:56:fa:91:87:a0:49:18
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=Example Root CA
 Validity
 Not Before: Apr 24 20:12:09 2018 GMT
 Not After : Apr 23 20:12:39 2021 GMT
 Subject: CN=Intermediate CA valid 3 years
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)

Here is an excerpt from the incta.pem file showing the example Intermediate CA certificate:

-----BEGIN CERTIFICATE-----
MIIFcjCCA1qgAwIBAgIUax4MhiDP8IjSUg1duVb6kYegSRgwDQYJKoZIhvcNAQEL
BQAwGjEYMBYGA1UEAxMPRXhhbXBsZSBSb290IENBMB4XDTE4MDQyNDIwMTIwOVoX
...
...
o2tL5nwR7ROiAr/kk9MIRzWrLNbc4cYth7jEjspU9dBqsXgsTozzWlwqI9ybZwvL
Ni1JnZandVlyQdoOaB2M/1DNFfKvwW3JeArKvDA9j95n/BWFTjoZ+YOz9pYit6T7
1GCGu3be
-----END CERTIFICATE-----

The openssl x509 utility will only decrypt the first certificate found in cert.pem, so you don't need to extract the server certificate from
cert.pem. In this example, the server certificate is signed by the intermediate CA above. Note the Subject Alternate Names: hpe-
ucp.cloudra.local is the FQDN of the UCP load balancer, and the other names are those of the UCP instances (hpe-
ucp01.cloudra.local, hpe-ucp02.clodura.local, hpe-ucp03.cloudra.local).

[root@ansible ucp_certs]# openssl x509 -text -noout -in server.pem
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 25:d9:f8:1d:9b:1d:23:f1:21:56:54:f2:43:cc:4f:0e:73:22:be:ec
 Signature Algorithm: sha256WithRSAEncryption

http://www.hpe.com

Deployment Guide Page 101

 Issuer: CN=Intermediate CA valid 3 years
 Validity
 Not Before: Apr 24 20:17:30 2018 GMT
 Not After : Apr 24 20:18:00 2019 GMT
 Subject: O=HPE, OU=CloudRA Team, CN=hpe-ucp.cloudra.local
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 CA Issuers - URI:http://localhost:8200/v1/intca
 (portions removed)

 X509v3 Subject Alternative Name:
 DNS:hpe-ucp.cloudra.local, DNS:hpe-ucp01.cloudra.local, DNS:hpe-
ucp02.cloudra.local, DNS:hpe-ucp03.cloudra.local

 The following excerpts from cert.pem show the first certificate which is the server certificate itself and the second certificate which is the
intermediate CA's certificate.

-----BEGIN CERTIFICATE-----
MIIFGTCCAwGgAwIBAgIUJdn4HZsdI/EhVlTyQ8xPDnMivuwwDQYJKoZIhvcNAQEL
BQAwKDEmMCQGA1UEAxMdSW50ZXJtZWRpYXRlIENBIHZhbGlkIDMgeWVhcnMwHhcN
...
...
s0R4I3Qnc50oNISng5l7wW1d4RMMwmXQhG1H5QKAUjHfJXH4bNtIzKxw/zGTVr4Z
llYKbEwJcgAvvfkn+w==
-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----
MIIFcjCCA1qgAwIBAgIUax4MhiDP8IjSUg1duVb6kYegSRgwDQYJKoZIhvcNAQEL
BQAwGjEYMBYGA1UEAxMPRXhhbXBsZSBSb290IENBMB4XDTE4MDQyNDIwMTIwOVoX
...
...
Ni1JnZandVlyQdoOaB2M/1DNFfKvwW3JeArKvDA9j95n/BWFTjoZ+YOz9pYit6T7
1GCGu3be
-----END CERTIFICATE-----

Finally, here is an excerpt from key.pem, the private key that goes with the server certificate.

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEA5rmmb52ufE80a3cXhY2HSRZNazb7/fipXY1rZ+U5+rJv9BN5
d/X3NTroSE8/PvoS/maGkHCnURGNqbu/G2umKN/tm/eSpDY861YnGWxj+bc0gtiU
...
...
A0SGidSMk3hFX1Iaftgx4EUGbrzZO7I8M5RO64U1aMFNFyj4XghJ2mZTdNelwNBw
pr/fYulyi5lYPalQHYH3OyvNqQQ3arEbTbZp8hEyY0gxtZRXmmaoqOY=
-----END RSA PRIVATE KEY-----

Verify your certificates
The playbooks do not verify the validity of the certificate files you supply so you should verify them manually before you start your deployment.

Verify that the private and the server cert match
On the Ansible box, run the following commands:

ckcert=$(openssl x509 -noout -modulus -in cert.pem | openssl md5)
ckkey=$(openssl rsa -noout -modulus -in key.pem| openssl md5)
if ["$ckkey" == "$ckcert"] ; then echo "Private key and Certificate match" ; else echo "STOP! Privat

http://www.hpe.com

Deployment Guide Page 102

e Key and Certificate don't match" ; fi

Verify that the server certificate was signed by the CA
Extract all but the first certificate from cert.pem (i.e. extract the certs for the intermediate CA authorities) into the file int.pem

sed -e '1,/-----END CERTIFICATE-----/d' cert.pem >intca.pem

Combine intca.pem and ca.pem to form cachain.pem:

cat intca.pem ca.pem > cachain.pem

Finally, verify that cert.pem was signed by the CA or by an intermediate CA:

openssl verify -verbose -CAfile cachain.pem cert.pem

A successful check will generate output similar to:

[root@ansible ucp_certs]# cat intca.pem ca.pem > cachain.pem
[root@ansible ucp_certs]# openssl verify -verbose -CAfile cachain.pem cert.pem
cert.pem: OK

An unsuccessful check will generate output similar to:

[root@ansible ucp_certs]# openssl verify -verbose -CAfile cachain.pem certsignedbyanotherca.pem
certsignedbyanotherca.pem: O = HPE, OU = CloudRA Team, CN = hpe-ucp.cloudra.local
error 20 at 0 depth lookup:unable to get local issuer certificate

Appendix C: Enabling SSL between the universal forwarders and the Splunk indexers using
your certificates
The procedure for enabling SSL between the universal forwarders and the Splunk indexers using your certificates is described below. In
summary, the following steps are required:

 Set the variable splunk_ssl to yes in group_vars/vars

 Put your root CA certificate and your server certificate files in /root/Docker-
SimpliVity/files/splunk/linux/SPLUNK_HOME/etc/mycerts

 Uncomment the [sslConfig] stanza in the file /files/splunk/linux/SPLUNK_HOME/etc/system/local/server.conf

Limitations
SSL only works with Linux worker nodes. The Universal Forwarders verify that the indexers they connect to have a certificate signed by the
configured root CA and that the Common Name in the certificate presented by the indexer matches its FQDN as listed by the variable
splunk_architecture_forward_servers.

Prerequisites
Configure your indexers to use SSL on port 9998. The following is an example inputs.conf file located in
$SPLUNK_HOME/etc/system/local that enables SSL on port 9998 and configures the certificate file for use by the indexer itself, in this
instance /opt/splunk/etc/mycerts/indexer.pem.

[splunktcp-ssl://9998]
disabled=0
connection_host = ip

[SSL]
serverCert=/opt/splunk/etc/mycerts/indexer.pem
#requireClientCert = true
#sslAltNameToCheck = forwarder,forwarder.cloudra.local

http://www.hpe.com

Deployment Guide Page 103

[tcp://1514]
connection_host = dns
sourcetype = ucp

For more information, see the documentation at
https://docs.splunk.com/Documentation/Splunk/7.1.2/Security/ConfigureSplunkforwardingtousesignedcertificates. In addition, you can see how
to create your own certificates and the content of the file designated with serverCert at
http://docs.splunk.com/Documentation/Splunk/7.1.2/Security/Howtoself-signcertificates.

In this instance, the folder mycerts was created under /opt/splunk/etc and the file indexer.pem was copied to this folder.

Indexers are configured with the Root CA cert used to sign all certificates. This can be achieved by editing the file server.conf in
$SPLUNK_HOME/etc/system/local on your indexer(s). The following code block shows the relevant portion of this file where
sssRootCaPath is pointing to the root CA certificate.

[sslConfig]
sslRootCAPath = /opt/splunk/etc/mycerts/ca.pem

Note
In order to be able to download and install additional applications, you may want to append the file $SPLUNK_HOME/auth/appsCA.pem to
your ca.pem file. If you don't do this, the Splunk UI will make this suggestion when you attempt to Find more apps.

Splunk should be restarted on the indexers if you had to make these changes (see the Splunk documentation for more information).

Before you deploy
Generate the forwarder certificate and name it forwarder.pem. Make sure that you copy the root CA certificate to ca.pem

 Copy both the ca.pem and the forwarder.pem files to files/splunk/linux/SPLUNK_HOME/etc/mycerts/ (overwriting any
existing files).

 Edit the file server.conf in the folder files/splunk/linux/SPLUNK_HOME/etc/system/local and uncomment the last two
lines as suggested in the file itself. Your file should look like this:

uncomment the section below if you want to enable SSL

[sslConfig]
sslRootCAPath = /opt/splunkforwarder/etc/mycerts/ca.pem

 Set splunk_ssl to yes in the file group_vars/vars, uncommenting the line if required. Make sure
that the splunk_architecture_forward_servers list specifies all your indexers together with the
port that was configured to accept SSL:

monitoring_stack: splunk
splunk_ssl: yes
splunk_architecture_forward_servers:
- indexer1.cloudra.local:9998
- indexer2.cloudra.local:9998

Hybrid environment Linux / Windows
Currently, you cannot deploy your own certificates for use by the Universal Forwarders deployed on Windows machines. If you want to have your
Linux machines in a hybrid deployment to use SSL, proceed as follows.

http://www.hpe.com
https://docs.splunk.com/Documentation/Splunk/7.1.2/Security/ConfigureSplunkforwardingtousesignedcertificates
http://docs.splunk.com/Documentation/Splunk/7.1.2/Security/Howtoself-signcertificates

Deployment Guide Page 104

 Comment out the splunk_architecture_forward_servers variable (and its values) from group_vars/vars

monitoring_stack: splunk
splunk_ssl: yes
#splunk_architecture_forward_servers:
- hpe2-ansible.cloudra.local:9998

 Create a file named vms.yml in the folder group_vars and specify the list of forward servers to use by the Linux servers. This list is
typically the same as the one used for Windows servers but specifies a TCP port that enables SSL.

splunk_architecture_forward_servers:
- hpe2-ansible.cloudra.local:9998

 Edit the group_vars/win_worker.yml file and specify the list of forward servers to be used by the Windows servers. This list is typically
the same as the one used for Linux servers but specifies a TCP port that does not enable SSL.

splunk_architecture_forward_servers:
- hpe2-ansible.cloudra.local:9997

Appendix D: How to check that certs were deployed correctly
The following commands should return the CA certificates used by UCP / DTR. This certificates is the same as the one pointed to by the --
cacert switch.

curl --cacert <ucp_certs_dir>/ca.pem https://<your ucp fqdn>/ca
curl --cacert <dtr_certs_dir>/ca.pem https://<your dtr fqdn>/ca

Output 1: certificates successfully deployed (content will depend on your own CA certificate)

-----BEGIN CERTIFICATE-----
MIIDyTCCArGgAwIBAgIUUeo+H6xGSB7/9gqq9T2SUwJPLggwDQYJKoZIhvcNAQEL
BQAwbDELMAkGA1UEBhMCRlIxFTATBgNVBAcTDFRoZSBJbnRlcm5ldDETMBEGA1UE
ChMKQ2hyaXN0b3BoZTEUMBIGA1UECxMLQ0EgU2VydmljZXMxGzAZBgNVBAMTEkNo
...
XkJ8WcsHocJO8J9J3RaWsM2BQc7wRntJc0kA7ooTH13OtQTP1jFcQp5xNdI4J3Mz
j9BAYERjkGqu7v9tfOem99oVGUal20pu4r73eWUm1mL948xuw6PgiRSLZrXhn/RS
uvFVnS/vPYJozOXIZA==
-----END CERTIFICATE-----

If the deployment was not successful, curl will output something like Output 2.

Output 2: certificates were not successfully deployed

curl: (60) Peer's Certificate issuer is not recognized.
More details here: http://curl.haxx.se/docs/sslcerts.html
...

Enable certs for browser (Windows 2016 example)
Choose Manage computer certificates in the control panel as shown in Figure 50.

http://www.hpe.com

Deployment Guide Page 105

Figure 50. Manage computer certificates

Import the ca.pem for UCP into the Trusted Root Certification Authorities, as shown in Figure 51.

Figure 51. Import the ca.pem

It should now show up in the list of certificates. You may need to restart your browser to see the green, secure lock symbol as shown in Figure 52.

Figure 52. Secure HTTPS

http://www.hpe.com

Deployment Guide

Sign up for updates

 © Copyright 2018 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without notice.
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard
Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft, Windows, and Windows Server are registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. VMware and vSphere are registered
trademarks of VMware, Inc. in the United States and/or other jurisdictions. Red Hat and Red Hat Enterprise Linux are registered
trademarks of Red Hat, Inc. in the United States and other countries.

a000xxxxxenw, December 2018

Resources and additional links
HPE Reference Architectures, hpe.com/info/ra

HPE SimpliVity, hpe.com/info/simplivity

HPE Servers, hpe.com/servers

HPE Storage, hpe.com/storage

HPE Networking, hpe.com/networking

HPE Technology Consulting Services, hpe.com/us/en/services/consulting.html

Docker Reference Architectures, https://success.docker.com/architectures

Splunk Validate Architectures, https://www.splunk.com/pdfs/white-papers/splunk-validated-architectures.pdf

Sysdig Resources, https://sysdig.com/resources/

To help us improve our documents, please provide feedback at hpe.com/contact/feedback.

http://www.hpe.com/info/getupdated
https://www.hpe.com/global/hpechat/index.html?jumpid=Collaterals_a00047301enw
http://www.hpe.com
http://www.hpe.com/info/ra
http://www.hpe.com/servers
http://www.hpe.com/storage
http://www.hpe.com/networking
http://www.hpe.com/us/en/services/consulting.html
https://success.docker.com/architectures
https://www.splunk.com/pdfs/white-papers/splunk-validated-architectures.pdf
https://sysdig.com/resources/
http://www.hpe.com/contact/feedback

	Executive Summary
	Solution overview
	New in this release
	Solution configuration
	HPE SimpliVity configuration
	Linux-only VM configuration
	Hybrid VM configuration (Windows and Linux)

	High availability
	Load Balancers

	Sizing considerations
	Disaster Recovery
	Security

	Solution components
	Hardware
	About HPE SimpliVity

	Software
	About Ansible
	About Docker Enterprise Edition

	Application software
	Monitoring with Splunk and Sysdig
	Monitoring with Prometheus and Grafana

	Preparing the environment
	Verify prerequisites
	Enable vSphere High Availability (HA)
	Install vSphere Docker Volume Service driver on all ESXi hosts
	Create the Ansible node
	Configure the yum repositories

	Create the Red Hat Linux template
	Update packages
	Finalize the template

	Configuring the solution components
	Ansible configuration
	Editing the inventory
	VMware configuration
	HPE SimpliVity configuration
	VM placement and number of HPE SimpliVity servers in the cluster
	Using more than three nodes when DRS is not enabled
	Using more than three nodes when DRS is enabled

	HPE SimpliVity backup configuration
	Networking configuration
	Environment configuration
	Docker configuration
	Orchestrator configuration
	Kubernetes configuration
	Pod CIDR
	Kubernetes Persistent Volume configuration
	Related playbooks

	Protecting sensitive information
	Inventory group variables

	Overview of the playbooks
	Core components
	Optional components
	Backup and restore playbooks
	Convenience playbooks
	Convenience scripts

	Deploying the core components
	Provisioning RHEL VMs
	Provisioning load balancers for UCP and DTR
	Legacy stand-alone load balancers
	Deploying without load balancers
	Deploying with your own load balancers

	Installing Docker UCP and DTR on RHEL VMs
	Deploying RHEL workers
	HPE SimpliVity backup playbooks
	Configure dummy VMs to backup Docker volumes
	Configure SimpliVity backups

	Post deployment
	Installing kubectl
	Manually installing kubectl

	Installing the client bundle
	Installing Helm
	Prerequisites
	Running the playbook
	Install sample charts
	Alpine
	Nginx

	Post-deploy validation
	Prerequisites
	Kubernetes guestbook example with Redis
	Quickstart
	Details
	Teardown

	UCP metrics in Prometheus
	Prerequisites
	Deploy Prometheus and Grafana
	Prometheus UI
	Using Grafana to vizualize UCP metrics

	Configuring storage
	Deploying the NFS provisioner for Kubernetes
	Prerequisites
	Using NFS VM for post-deployment verification
	Running the playbook

	Manually testing the NFS provisioner
	Validating the NFS provisioner using WordPress and MySQL
	Prerequisites
	Running the playbook
	Configuring WordPress
	Create your first post
	Test persistence for WordPress
	Test persistence in MySQL

	Deploying Windows workers
	Create the Windows Template
	Playbooks for adding Windows workers
	Windows configuration
	Configuring the winrm remoting script
	group_vars/win_worker.yml

	Windows operating system and Docker EE

	Deploying Sysdig monitoring
	Monitoring with Sysdig
	Playbooks for installing Sysdig on RHEL
	Sysdig configuration
	Sysdig configuration for Docker swarm
	Sysdig configuration for Kubernetes

	Registering for Sysdig trial
	Sysdig Monitoring for Kubernetes
	Sysdig Monitor for Docker swarm

	Deploying Sysdig monitoring on Kubernetes
	Prerequisites
	Running the playbook

	Deploying Sysdig monitoring on Docker Swarm

	Deploying Splunk
	Monitoring with Splunk
	Playbooks for installing Splunk
	Splunk configuration
	Splunk prerequisites
	Configuring syslog in UCP
	Configuring syslog in ESX
	Limitations

	Accessing Splunk UI
	Redeploying Splunk demo

	Deploying Prometheus and Grafana on Kubernetes
	Monitoring Kubernetes with Prometheus and Grafana
	Playbooks for installing Prometheus and Grafana on Kubernetes
	Prerequisites
	Prometheus Operator
	Kube state metrics
	Node exporter
	Monitors
	cAdvisor
	Prometheus
	Grafana
	Teardown

	Prometheus UI
	Node Exporter
	cAdvisor
	Grafana UI

	Deploying Prometheus and Grafana on Docker swarm
	Monitoring with Prometheus and Grafana
	Playbooks for installing Prometheus and Grafana on Docker swarm
	Prometheus and Grafana configuration
	Accessing Grafana UI

	Backup and restore
	Backup and restore UCP and DTR
	Backup UCP and DTR
	Backup configuration variables
	Backing up the swarm
	Backing up the Universal Control Plane (UCP)
	Backing up the Docker Trusted Registry (DTR)
	Backing up DTR data (images)
	Backing up other metadata, including passwords
	Backup Utility
	Related playbooks

	Restoring your cluster after a disaster
	Before you restore
	Restore UCP and DTR
	Restore DTR metadata and DTR images
	Related playbooks

	HPE SimpliVity backups
	Backup and restore Docker persistent volumes
	Create a Docker volume
	Automated backup
	Manual backup
	Restore
	Test the restore

	Solution lifecycle management
	HPE SimpliVity environment
	VMware Components
	HPE server software

	vSphere Docker Volume Service Plug-in
	Red Hat Enterprise Linux operating system
	Docker EE Environment
	Monitoring Tools

	Summary
	Appendix A: Bill of materials
	Software Licenses

	Appendix B: Using customer supplied certificates for UCP and DTR
	Generating and testing certificates
	Verify your certificates
	Verify that the private and the server cert match
	Verify that the server certificate was signed by the CA

	Appendix C: Enabling SSL between the universal forwarders and the Splunk indexers using your certificates
	Limitations
	Prerequisites
	Before you deploy
	Hybrid environment Linux / Windows

	Appendix D: How to check that certs were deployed correctly
	Enable certs for browser (Windows 2016 example)

	Resources and additional links

