Skip to content

cmflib.cmf

This class provides methods to log metadata for distributed AI pipelines. The class instance creates an ML metadata store to store the metadata. It creates a driver to store nodes and its relationships to neo4j. The user has to provide the name of the pipeline, that needs to be recorded with CMF.

cmflib.cmf.Cmf(
    filepath="mlmd",
    pipeline_name="test_pipeline",
    custom_properties={"owner": "user_a"},
    graph=False
)
Args: filepath: Path to the sqlite file to store the metadata pipeline_name: Name to uniquely identify the pipeline. Note that name is the unique identifier for a pipeline. If a pipeline already exist with the same name, the existing pipeline object is reused. custom_properties: Additional properties of the pipeline that needs to be stored. graph: If set to true, the libray also stores the relationships in the provided graph database. The following variables should be set: neo4j_uri (graph server URI), neo4j_user (user name) and neo4j_password (user password), e.g.:
cmf init local --path /home/user/local-storage --git-remote-url https://github.com/XXX/exprepo.git --neo4j-user neo4j --neo4j-password neo4j
                      --neo4j-uri bolt://localhost:7687

Source code in cmflib/cmf.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def __init__(
        self,
        filepath: str = "mlmd",
        pipeline_name: str = "",
        custom_properties: t.Optional[t.Dict] = None,
        graph: bool = False,
        is_server: bool = False,
    ):
        #path to directory
        self.cmf_init_path = filepath.rsplit("/",1)[0] \
				 if len(filepath.rsplit("/",1)) > 1 \
					else  os.getcwd()

        logging_dir = change_dir(self.cmf_init_path)
        temp_store: t.Optional[t.Union[SqlliteStore, PostgresStore]] = None
        if is_server is False:
            Cmf.__prechecks()
            temp_store = SqlliteStore({"filename": filepath})
        else:
            config_dict = get_postgres_config()
            temp_store = PostgresStore(config_dict)
        if custom_properties is None:
            custom_properties = {}
        # If pipeline_name is not provided, derive it from the current folder name 
        # self.pipeline_name to ensure that it is accessible as an instance variable for use in other methods
        if not pipeline_name:
            # assign folder name as pipeline name 
            cur_folder = os.path.basename(os.getcwd())
            pipeline_name = cur_folder
        self.pipeline_name = pipeline_name
        self.store = temp_store.connect()
        self.filepath = filepath
        self.child_context = None
        self.execution = None
        self.execution_name = ""
        self.execution_command = ""
        self.metrics: dict[str, dict[int, dict[str, t.Any]]] = {}
        self.input_artifacts: list[str] = []
        self.execution_label_props: dict[str, str] = {}
        self.graph = graph
        #last token in filepath
        self.branch_name = filepath.rsplit("/", 1)[-1]

        if is_server is False:
            git_checkout_new_branch(self.branch_name)
        self.parent_context = get_or_create_parent_context(
            store=self.store,
            pipeline=self.pipeline_name,
            custom_properties=custom_properties,
        )
        if is_server:
            Cmf.__get_neo4j_server_config()
        if graph is True:
            Cmf.__load_neo4j_params()
            self.driver = graph_wrapper.GraphDriver(
                Cmf.__neo4j_uri, Cmf.__neo4j_user, Cmf.__neo4j_password
            )
            self.driver.create_pipeline_node(
                self.pipeline_name, self.parent_context.id, custom_properties
            )
        os.chdir(logging_dir)

create_context(pipeline_stage, custom_properties=None)

Create's a context(stage). Every call creates a unique pipeline stage. Updates Pipeline_stage name. Example:

#Create context
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create context
context: mlmd.proto.Context = cmf.create_context(
    pipeline_stage="prepare",
    custom_properties ={"user-metadata1": "metadata_value"}
)
Args: Pipeline_stage: Name of the Stage. custom_properties: Developers can provide key value pairs with additional properties of the execution that need to be stored. Returns: Context object from ML Metadata library associated with the new context for this stage.

Source code in cmflib/cmf.py
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def create_context(
    self, pipeline_stage: str, custom_properties: t.Optional[t.Dict] = None
) -> mlpb.Context:  # type: ignore  # Context type not recognized by mypy, using ignore to bypass
    """Create's a  context(stage).
    Every call creates a unique pipeline stage.
    Updates Pipeline_stage name.
    Example:
        ```python
        #Create context
        # Import CMF
        from cmflib.cmf import Cmf
        from ml_metadata.proto import metadata_store_pb2 as mlpb
        # Create CMF logger
        cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
        # Create context
        context: mlmd.proto.Context = cmf.create_context(
            pipeline_stage="prepare",
            custom_properties ={"user-metadata1": "metadata_value"}
        )

        ```
        Args:
            Pipeline_stage: Name of the Stage.
            custom_properties: Developers can provide key value pairs with additional properties of the execution that
                need to be stored.
        Returns:
            Context object from ML Metadata library associated with the new context for this stage.
    """
    custom_props = {} if custom_properties is None else custom_properties
    pipeline_stage = self.parent_context.name + "/" + pipeline_stage
    ctx = get_or_create_run_context(
        self.store, pipeline_stage, custom_props)
    self.child_context = ctx
    associate_child_to_parent_context(
        store=self.store, parent_context=self.parent_context, child_context=ctx
    )
    if self.graph:
        self.driver.create_stage_node(
            pipeline_stage, self.parent_context, ctx.id, custom_props
        )
    return ctx

create_execution(execution_type, custom_properties=None, cmd=None, create_new_execution=True)

Create execution. Every call creates a unique execution. Execution can only be created within a context, so create_context must be called first. Example:

# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create or reuse context for this stage
context: mlmd.proto.Context = cmf.create_context(
    pipeline_stage="prepare",
    custom_properties ={"user-metadata1": "metadata_value"}
)
# Create a new execution for this stage run
execution: mlmd.proto.Execution = cmf.create_execution(
    execution_type="Prepare",
    custom_properties = {"split": split, "seed": seed}
)
Args: execution_type: Type of the execution.(when create_new_execution is False, this is the name of execution) custom_properties: Developers can provide key value pairs with additional properties of the execution that need to be stored.

cmd: command used to run this execution.

create_new_execution:bool = True, This can be used by advanced users to re-use executions
    This is applicable, when working with framework code like mmdet, pytorch lightning etc, where the
    custom call-backs are used to log metrics.
    if create_new_execution is True(Default), execution_type parameter will be used as the name of the execution type.
    if create_new_execution is False, if existing execution exist with the same name as execution_type.
    it will be reused.
    Only executions created with  create_new_execution as False will have "name" as a property.

Returns:

Type Description
Execution

Execution object from ML Metadata library associated with the new execution for this stage.

Source code in cmflib/cmf.py
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
def create_execution(
    self,
    execution_type: str,
    custom_properties: t.Optional[t.Dict] = None,
    cmd: t.Optional[str] = None,
    create_new_execution: bool = True,
) -> mlpb.Execution:    # type: ignore  # Execution type not recognized by mypy, using ignore to bypass
    """Create execution.
    Every call creates a unique execution. Execution can only be created within a context, so
    [create_context][cmflib.cmf.Cmf.create_context] must be called first.
    Example:
        ```python
        # Import CMF
        from cmflib.cmf import Cmf
        from ml_metadata.proto import metadata_store_pb2 as mlpb
        # Create CMF logger
        cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
        # Create or reuse context for this stage
        context: mlmd.proto.Context = cmf.create_context(
            pipeline_stage="prepare",
            custom_properties ={"user-metadata1": "metadata_value"}
        )
        # Create a new execution for this stage run
        execution: mlmd.proto.Execution = cmf.create_execution(
            execution_type="Prepare",
            custom_properties = {"split": split, "seed": seed}
        )
        ```
    Args:
        execution_type: Type of the execution.(when create_new_execution is False, this is the name of execution)
        custom_properties: Developers can provide key value pairs with additional properties of the execution that
            need to be stored.

        cmd: command used to run this execution.

        create_new_execution:bool = True, This can be used by advanced users to re-use executions
            This is applicable, when working with framework code like mmdet, pytorch lightning etc, where the
            custom call-backs are used to log metrics.
            if create_new_execution is True(Default), execution_type parameter will be used as the name of the execution type.
            if create_new_execution is False, if existing execution exist with the same name as execution_type.
            it will be reused.
            Only executions created with  create_new_execution as False will have "name" as a property.


    Returns:
        Execution object from ML Metadata library associated with the new execution for this stage.
    """
    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    assigned_stage_name = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=assigned_stage_name)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # Initializing the execution related fields

    self.metrics = {}
    self.input_artifacts = []
    self.execution_label_props = {}
    custom_props = {} if custom_properties is None else custom_properties
    git_repo = git_get_repo()
    git_start_commit = git_get_commit()
    cmd = str(sys.argv) if cmd is None else cmd

    self.execution = create_new_execution_in_existing_run_context(
        store=self.store,
        # Type field when re-using executions
        execution_type_name=self.child_context.name,
        execution_name=execution_type, 
        #Name field if we are re-using executions
        #Type field , if creating new executions always 
        context_id=self.child_context.id,
        execution=cmd,
        pipeline_id=self.parent_context.id,
        pipeline_type=self.parent_context.name,
        git_repo=git_repo,
        git_start_commit=git_start_commit,
        custom_properties=custom_props,
        create_new_execution=create_new_execution,
    )
    uuids = self.execution.properties["Execution_uuid"].string_value
    if uuids:
        self.execution.properties["Execution_uuid"].string_value = uuids+","+str(uuid.uuid1())
    else:
        self.execution.properties["Execution_uuid"].string_value = str(uuid.uuid1())          
    self.store.put_executions([self.execution])
    self.execution_name = str(self.execution.id) + "," + execution_type
    self.execution_command = cmd
    for k, v in custom_props.items():
        k = re.sub("-", "_", k)
        self.execution_label_props[k] = v
    self.execution_label_props["Execution_Name"] = (
        execution_type + ":" + str(self.execution.id)
    )

    self.execution_label_props["execution_command"] = cmd

    # The following lines create an artifact of type 'Environment'.  
    # This artifact captures detailed information about all installed packages in the environment.  
    # (Additional Information: The package details are retrieved using `pip freeze` or `conda list`.  
    # Note: `pip freeze` lists only Python packages, whereas `conda list` may also include non-Python dependencies.)  

    directory_path = self.ARTIFACTS_PATH
    os.makedirs(directory_path, exist_ok=True)
    packages = get_python_env(env_name=self.branch_name)
    if isinstance(packages, list):
        output = f"{packages}\n"
        md5_hash = get_md5_hash(output)
        python_env_file_path = os.path.join(directory_path, f"python_env_{md5_hash}.txt")
        # create file if it doesn't exists
        if not os.path.exists(python_env_file_path):
            #print(f"{python_env_file_path} doesn't exists!!")
            with open(python_env_file_path, 'w') as file:
                for package in packages:
                    file.write(f"{package}\n")

    else:
        # in case output is dict
        env_output = yaml.dump(packages, sort_keys=False)
        md5_hash = get_md5_hash(env_output)
        python_env_file_path = os.path.join(directory_path, f"python_env_{md5_hash}.yaml")
        # create file if it doesn't exists
        if not os.path.exists(python_env_file_path):
            #print(f"{python_env_file_path} doesn't exists!!")
            with open(python_env_file_path, 'w') as file:
                file.write(env_output)

    if self.graph:
        self.driver.create_execution_node(
        self.execution_name,
        self.child_context.id,
        self.parent_context,
        cmd,
        self.execution.id,
        custom_props,
    )

    custom_props["Python_Env"] = python_env_file_path
    self.update_execution(self.execution.id, custom_props)
    # link the artifact to execution if it exists and creates artifact if it doesn't
    self.log_python_env(python_env_file_path)
    os.chdir(logging_dir)
    return self.execution

update_execution(execution_id, custom_properties=None)

Updates an existing execution. The custom properties can be updated after creation of the execution. The new custom properties is merged with earlier custom properties. Example

# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Update a execution
execution: mlmd.proto.Execution = cmf.update_execution(
    execution_id=8,
    custom_properties = {"split": split, "seed": seed}
)
Args: execution_id: id of the execution. custom_properties: Developers can provide key value pairs with additional properties of the execution that need to be updated. Returns: Execution object from ML Metadata library associated with the updated execution for this stage.

Source code in cmflib/cmf.py
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
def update_execution(
    self, execution_id: int, custom_properties: t.Optional[t.Dict] = None
):
    """Updates an existing execution.
    The custom properties can be updated after creation of the execution.
    The new custom properties is merged with earlier custom properties.
    Example
        ```python
        # Import CMF
        from cmflib.cmf import Cmf
        from ml_metadata.proto import metadata_store_pb2 as mlpb
        # Create CMF logger
        cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
        # Update a execution
        execution: mlmd.proto.Execution = cmf.update_execution(
            execution_id=8,
            custom_properties = {"split": split, "seed": seed}
        )
        ```
        Args:
            execution_id: id of the execution.
            custom_properties: Developers can provide key value pairs with additional properties of the execution that
            need to be updated.
        Returns:
            Execution object from ML Metadata library associated with the updated execution for this stage.
    """
    self.execution = self.store.get_executions_by_id([execution_id])[0]
    if self.execution is None:
        print("Error - no execution id")
        return
    execution_type = self.store.get_execution_types_by_id([self.execution.type_id])[0]

    if custom_properties:
        for key, value in custom_properties.items():
            if isinstance(value, int):
                self.execution.custom_properties[key].int_value = value
            else:
                self.execution.custom_properties[key].string_value = str(value)
    self.store.put_executions([self.execution])
    c_props = {}
    for k, v in self.execution.custom_properties.items():
        key = re.sub("-", "_", k)
        val_type = str(v).split(":", maxsplit=1)[0]
        if val_type == "string_value":
            val = self.execution.custom_properties[k].string_value
        else:
            val = str(v).split(":")[1].strip()
        # The properties value are stored in the format type:value hence,
        # taking only value
        self.execution_label_props[key] = val
        c_props[key] = val
    self.execution_name = str(self.execution.id) + \
        "," + execution_type.name
    self.execution_command = self.execution.properties["Execution"]
    self.execution_label_props["Execution_Name"] = (
        execution_type.name + ":" + str(self.execution.id)
    )
    self.execution_label_props["execution_command"] = self.execution.properties[
        "Execution"
    ].string_value
    if self.graph:
        self.driver.create_execution_node(
            self.execution_name,
            self.child_context.id,
            self.parent_context,
            self.execution.properties["Execution"].string_value,
            self.execution.id,
            c_props,
        )
    return self.execution

log_dataset(url, event, custom_properties=None, external=False)

Logs a dataset as artifact. This call adds the dataset to dvc. The dvc metadata file created (.dvc) will be added to git and committed. The version of the dataset is automatically obtained from the versioning software(DVC) and tracked as a metadata. Example:

artifact: mlmd.proto.Artifact = cmf.log_dataset(
    url="/repo/data.xml",
    event="input",
    custom_properties={"source":"kaggle"}
)
Args: url: The path to the dataset. event: Takes arguments INPUT OR OUTPUT. custom_properties: Dataset properties (key/value pairs). Returns: Artifact object from ML Metadata library associated with the new dataset artifact.

Source code in cmflib/cmf.py
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
def log_dataset(
    self,
    url: str,
    event: str,
    custom_properties: t.Optional[t.Dict] = None,
    external: bool = False,
) -> mlpb.Artifact: # type: ignore  # Artifact type not recognized by mypy, using ignore to bypass
    """Logs a dataset as artifact.
    This call adds the dataset to dvc. The dvc metadata file created (.dvc) will be added to git and committed. The
    version of the  dataset is automatically obtained from the versioning software(DVC) and tracked as a metadata.
    Example:
        ```python
        artifact: mlmd.proto.Artifact = cmf.log_dataset(
            url="/repo/data.xml",
            event="input",
            custom_properties={"source":"kaggle"}
        )
        ```
    Args:
         url: The path to the dataset.
         event: Takes arguments `INPUT` OR `OUTPUT`.
         custom_properties: Dataset properties (key/value pairs).
    Returns:
        Artifact object from ML Metadata library associated with the new dataset artifact.
    """
    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    assigned_name = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=assigned_name)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # create execution if not already created
    if not self.execution:
        self.create_execution(execution_type=assigned_name)
        assert self.execution is not None, f"Failed to create execution for {self.pipeline_name}!!"

            ### To Do : Technical Debt. 
    # If the dataset already exist , then we just link the existing dataset to the execution
    # We do not update the dataset properties . 
    # We need to append the new properties to the existing dataset properties
    custom_props = {} if custom_properties is None else custom_properties
    git_repo = git_get_repo()
    name = re.split("/", url)[-1]
    event_type = mlpb.Event.Type.OUTPUT
    existing_artifact = []
    if event.lower() == "input":
        event_type = mlpb.Event.Type.INPUT

    commit_output(url, self.execution.id)
    c_hash = dvc_get_hash(url)

    if c_hash == "":
        print("Error in getting the dvc hash,return without logging")
        return

    dataset_commit = c_hash
    dvc_url = dvc_get_url(url)
    dvc_url_with_pipeline = f"{self.parent_context.name}:{dvc_url}"
    url = url + ":" + c_hash
    if c_hash and c_hash.strip:
        existing_artifact.extend(self.store.get_artifacts_by_uri(c_hash))

    # To Do - What happens when uri is the same but names are different
    if existing_artifact and len(existing_artifact) != 0:
        existing_artifact = existing_artifact[0]

        # Quick fix- Updating only the name
        if custom_properties is not None:
            self.update_existing_artifact(
                existing_artifact, custom_properties)
        uri = c_hash
        # update url for existing artifact
        self.update_dataset_url(existing_artifact, dvc_url_with_pipeline)
        artifact = link_execution_to_artifact(
            store=self.store,
            execution_id=self.execution.id,
            uri=uri,
            input_name=url,
            event_type=event_type,
        )
    else:
        # if((existing_artifact and len(existing_artifact )!= 0) and c_hash != ""):
        #   url = url + ":" + str(self.execution.id)
        uri = c_hash if c_hash and c_hash.strip() else str(uuid.uuid1())
        artifact = create_new_artifact_event_and_attribution(
            store=self.store,
            execution_id=self.execution.id,
            context_id=self.child_context.id,
            uri=uri,
            name=url,
            type_name="Dataset",
            event_type=event_type,
            properties={
                "git_repo": str(git_repo),
                # passing c_hash value to commit
                "Commit": str(dataset_commit),
                "url": str(dvc_url_with_pipeline),
            },
            artifact_type_properties={
                "git_repo": mlpb.STRING,
                "Commit": mlpb.STRING,
                "url": mlpb.STRING,
            },
            custom_properties=custom_props,
            milliseconds_since_epoch=int(time.time() * 1000),
        )
    custom_props["git_repo"] = git_repo
    custom_props["Commit"] = dataset_commit
    self.execution_label_props["git_repo"] = git_repo
    self.execution_label_props["Commit"] = dataset_commit

    if self.graph:
        self.driver.create_dataset_node(
            name,
            url,
            uri,
            event,
            self.execution.id,
            self.parent_context,
            custom_props,
        )
        if event.lower() == "input":
            self.input_artifacts.append(
                {
                    "Name": name,
                    "Path": url,
                    "URI": uri,
                    "Event": event.lower(),
                    "Execution_Name": self.execution_name,
                    "Type": "Dataset",
                    "Execution_Command": self.execution_command,
                    "Pipeline_Id": self.parent_context.id,
                    "Pipeline_Name": self.parent_context.name,
                }
            )
            self.driver.create_execution_links(uri, name, "Dataset")
        else:
            child_artifact = {
                "Name": name,
                "Path": url,
                "URI": uri,
                "Event": event.lower(),
                "Execution_Name": self.execution_name,
                "Type": "Dataset",
                "Execution_Command": self.execution_command,
                "Pipeline_Id": self.parent_context.id,
                "Pipeline_Name": self.parent_context.name,
            }
            self.driver.create_artifact_relationships(
                self.input_artifacts, child_artifact, self.execution_label_props
            )
    os.chdir(logging_dir)
    return artifact

log_model(path, event, model_framework='Default', model_type='Default', model_name='Default', custom_properties=None)

Logs a model. The model is added to dvc and the metadata file (.dvc) gets committed to git. Example:

artifact: mlmd.proto.Artifact= cmf.log_model(
    path="path/to/model.pkl",
    event="output",
    model_framework="SKlearn",
    model_type="RandomForestClassifier",
    model_name="RandomForestClassifier:default"
)
Args: path: Path to the model file. event: Takes arguments INPUT OR OUTPUT. model_framework: Framework used to create the model. model_type: Type of model algorithm used. model_name: Name of the algorithm used. custom_properties: The model properties. Returns: Artifact object from ML Metadata library associated with the new model artifact.

Source code in cmflib/cmf.py
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
def log_model(
    self,
    path: str,
    event: str,
    model_framework: str = "Default",
    model_type: str = "Default",
    model_name: str = "Default",
    custom_properties: t.Optional[t.Dict] = None,
) -> mlpb.Artifact: # type: ignore  # Artifact type not recognized by mypy, using ignore to bypass
    """Logs a model.
    The model is added to dvc and the metadata file (.dvc) gets committed to git.
    Example:
        ```python
        artifact: mlmd.proto.Artifact= cmf.log_model(
            path="path/to/model.pkl",
            event="output",
            model_framework="SKlearn",
            model_type="RandomForestClassifier",
            model_name="RandomForestClassifier:default"
        )
        ```
    Args:
        path: Path to the model file.
        event: Takes arguments `INPUT` OR `OUTPUT`.
        model_framework: Framework used to create the model.
        model_type: Type of model algorithm used.
        model_name: Name of the algorithm used.
        custom_properties: The model properties.
    Returns:
        Artifact object from ML Metadata library associated with the new model artifact.
    """

    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    assigned_name = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=assigned_name)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # create execution if not already created
    if not self.execution:
        self.create_execution(execution_type=assigned_name)
        assert self.execution is not None, f"Failed to create execution for {self.pipeline_name}!!"


    # To Do : Technical Debt. 
    # If the model already exist , then we just link the existing model to the execution
    # We do not update the model properties . 
    # We need to append the new properties to the existing model properties
    if custom_properties is None:
        custom_properties = {}
    custom_props = {} if custom_properties is None else custom_properties
    # name = re.split('/', path)[-1]
    event_type = mlpb.Event.Type.OUTPUT
    existing_artifact = []
    if event.lower() == "input":
        event_type = mlpb.Event.Type.INPUT

    commit_output(path, self.execution.id)
    c_hash = dvc_get_hash(path)

    if c_hash == "":
        print("Error in getting the dvc hash,return without logging")
        return

    model_commit = c_hash

    # If connecting to an existing artifact - The name of the artifact is
    # used as path/steps/key
    model_uri = path + ":" + c_hash
    dvc_url = dvc_get_url(path, False)
    url = dvc_url
    url_with_pipeline = f"{self.parent_context.name}:{url}"
    uri = ""
    if c_hash and c_hash.strip():
        uri = c_hash.strip()
        existing_artifact.extend(self.store.get_artifacts_by_uri(uri))
    else:
        raise RuntimeError("Model commit failed, Model uri empty")

    if (
        existing_artifact
        and len(existing_artifact) != 0
    ):
        # update url for existing artifact
        existing_artifact = self.update_model_url(
            existing_artifact, url_with_pipeline
        )
        artifact = link_execution_to_artifact(
            store=self.store,
            execution_id=self.execution.id,
            uri=c_hash,
            input_name=model_uri,
            event_type=event_type,
        )
        model_uri =  model_uri + ":" + str(self.execution.id)
    else:
        uri = c_hash if c_hash and c_hash.strip() else str(uuid.uuid1())
        model_uri = model_uri + ":" + str(self.execution.id)
        artifact = create_new_artifact_event_and_attribution(
            store=self.store,
            execution_id=self.execution.id,
            context_id=self.child_context.id,
            uri=uri,
            name=model_uri,
            type_name="Model",
            event_type=event_type,
            properties={
                "model_framework": str(model_framework),
                "model_type": str(model_type),
                "model_name": str(model_name),
                # passing c_hash value to commit
                "Commit": str(model_commit),
                "url": str(url_with_pipeline),
            },
            artifact_type_properties={
                "model_framework": mlpb.STRING,
                "model_type": mlpb.STRING,
                "model_name": mlpb.STRING,
                "Commit": mlpb.STRING,
                "url": mlpb.STRING,
            },
            custom_properties=custom_props,
            milliseconds_since_epoch=int(time.time() * 1000),
        )
    custom_properties["Commit"] = model_commit
    self.execution_label_props["Commit"] = model_commit
    #To DO model nodes should be similar to dataset nodes when we create neo4j
    if self.graph:
        self.driver.create_model_node(
            model_uri,
            uri,
            event,
            self.execution.id,
            self.parent_context,
            custom_props,
        )
        if event.lower() == "input":
            self.input_artifacts.append(
                {
                    "Name": model_uri,
                    "URI": uri,
                    "Event": event.lower(),
                    "Execution_Name": self.execution_name,
                    "Type": "Model",
                    "Execution_Command": self.execution_command,
                    "Pipeline_Id": self.parent_context.id,
                    "Pipeline_Name": self.parent_context.name,
                }
            )
            self.driver.create_execution_links(uri, model_uri, "Model")
        else:
            child_artifact = {
                "Name": model_uri,
                "URI": uri,
                "Event": event.lower(),
                "Execution_Name": self.execution_name,
                "Type": "Model",
                "Execution_Command": self.execution_command,
                "Pipeline_Id": self.parent_context.id,
                "Pipeline_Name": self.parent_context.name,
            }

            self.driver.create_artifact_relationships(
                self.input_artifacts, child_artifact, self.execution_label_props
            )
    os.chdir(logging_dir)
    return artifact

log_execution_metrics(metrics_name, custom_properties=None)

Log the metadata associated with the execution (coarse-grained tracking). It is stored as a metrics artifact. This does not have a backing physical file, unlike other artifacts that we have. Example:

exec_metrics: mlpb.Artifact = cmf.log_execution_metrics(
    metrics_name="Training_Metrics",
    {"auc": auc, "loss": loss}
)
Args: metrics_name: Name to identify the metrics. custom_properties: Dictionary with metric values. Returns: Artifact object from ML Metadata library associated with the new coarse-grained metrics artifact.

Source code in cmflib/cmf.py
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
def log_execution_metrics(
    self, metrics_name: str, custom_properties: t.Optional[t.Dict] = None
) -> mlpb.Artifact: # type: ignore  # Artifact type not recognized by mypy, using ignore to bypass
    """Log the metadata associated with the execution (coarse-grained tracking).
    It is stored as a metrics artifact. This does not have a backing physical file, unlike other artifacts that we
    have.
    Example:
        ```python
        exec_metrics: mlpb.Artifact = cmf.log_execution_metrics(
            metrics_name="Training_Metrics",
            {"auc": auc, "loss": loss}
        )
        ```
    Args:
        metrics_name: Name to identify the metrics.
        custom_properties: Dictionary with metric values.
    Returns:
          Artifact object from ML Metadata library associated with the new coarse-grained metrics artifact.
    """
    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    assigned_name = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=assigned_name)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # create execution if not already created
    if not self.execution:
        self.create_execution(execution_type=assigned_name)
        assert self.execution is not None, f"Failed to create execution for {self.pipeline_name}!!"

    custom_props = {} if custom_properties is None else custom_properties
    uri = str(uuid.uuid1())
    metrics_name = metrics_name + ":" + uri + ":" + str(self.execution.id)
    metrics = create_new_artifact_event_and_attribution(
        store=self.store,
        execution_id=self.execution.id,
        context_id=self.child_context.id,
        uri=uri,
        name=metrics_name,
        type_name="Metrics",
        event_type=mlpb.Event.Type.OUTPUT,
        properties={"metrics_name": metrics_name},
        artifact_type_properties={"metrics_name": mlpb.STRING},
        custom_properties=custom_props,
        milliseconds_since_epoch=int(time.time() * 1000),
    )
    if self.graph:
        # To do create execution_links
        self.driver.create_metrics_node(
            metrics_name,
            uri,
            "output",
            self.execution.id,
            self.parent_context,
            custom_props,
        )
        child_artifact = {
            "Name": metrics_name,
            "URI": uri,
            "Event": "output",
            "Execution_Name": self.execution_name,
            "Type": "Metrics",
            "Execution_Command": self.execution_command,
            "Pipeline_Id": self.parent_context.id,
            "Pipeline_Name": self.parent_context.name,
        }
        self.driver.create_artifact_relationships(
            self.input_artifacts, child_artifact, self.execution_label_props
        )
    os.chdir(logging_dir)
    return metrics

log_metric(metrics_name, custom_properties=None)

Stores the fine-grained (per step or per epoch) metrics to memory. The metrics provided are stored in a parquet file. The commit_metrics call add the parquet file in the version control framework. The metrics written in the parquet file can be retrieved using the read_metrics call. Example:

# Can be called at every epoch or every step in the training. This is logged to a parquet file and committed
# at the commit stage.
# Inside training loop
while True:
     cmf.log_metric("training_metrics", {"train_loss": train_loss})
cmf.commit_metrics("training_metrics")
Args: metrics_name: Name to identify the metrics. custom_properties: Dictionary with metrics.

Source code in cmflib/cmf.py
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
def log_metric(
    self, metrics_name: str, custom_properties: t.Optional[t.Dict] = None
) -> None:
    """Stores the fine-grained (per step or per epoch) metrics to memory.
    The metrics provided are stored in a parquet file. The `commit_metrics` call add the parquet file in the version
    control framework. The metrics written in the parquet file can be retrieved using the `read_metrics` call.
    Example:
        ```python
        # Can be called at every epoch or every step in the training. This is logged to a parquet file and committed
        # at the commit stage.
        # Inside training loop
        while True:
             cmf.log_metric("training_metrics", {"train_loss": train_loss})
        cmf.commit_metrics("training_metrics")
        ```
    Args:
        metrics_name: Name to identify the metrics.
        custom_properties: Dictionary with metrics.
    """
    custom_props = {} if custom_properties is None else custom_properties
    if metrics_name in self.metrics:
        key = max((self.metrics[metrics_name]).keys()) + 1
        self.metrics[metrics_name][key] = custom_props
    else:
        self.metrics[metrics_name] = {}
        self.metrics[metrics_name][1] = custom_props

create_dataslice(name)

Creates a dataslice object. Once created, users can add data instances to this data slice with add_data method. Users are also responsible for committing data slices by calling the commit method. Example:

dataslice = cmf.create_dataslice("slice-a")
Args: name: Name to identify the dataslice.

Returns:

Type Description
DataSlice

Instance of a newly created [DataSlice][cmflib.cmf.Cmf.DataSlice].

Source code in cmflib/cmf.py
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
def create_dataslice(self, name: str) -> "Cmf.DataSlice":
    """Creates a dataslice object.
    Once created, users can add data instances to this data slice with [add_data][cmflib.cmf.Cmf.DataSlice.add_data]
    method. Users are also responsible for committing data slices by calling the
    [commit][cmflib.cmf.Cmf.DataSlice.commit] method.
    Example:
        ```python
        dataslice = cmf.create_dataslice("slice-a")
        ```
    Args:
        name: Name to identify the dataslice.

    Returns:
        Instance of a newly created [DataSlice][cmflib.cmf.Cmf.DataSlice].
    """
    return Cmf.DataSlice(name, self)

update_dataslice(name, record, custom_properties)

Updates a dataslice record in a Parquet file with the provided custom properties. Example:

   dataslice=cmf.update_dataslice("dataslice_file.parquet", "record_id", 
   {"key1": "updated_value"})
Args: name: Name of the Parquet file. record: Identifier of the dataslice record to be updated. custom_properties: Dictionary containing custom properties to update.

Returns:

Type Description

None

Source code in cmflib/cmf.py
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
def update_dataslice(self, name: str, record: str, custom_properties: t.Dict):
    """Updates a dataslice record in a Parquet file with the provided custom properties.
    Example:
    ```python
       dataslice=cmf.update_dataslice("dataslice_file.parquet", "record_id", 
       {"key1": "updated_value"})
    ```
    Args:
       name: Name of the Parquet file.
       record: Identifier of the dataslice record to be updated.
       custom_properties: Dictionary containing custom properties to update.

    Returns:
       None
    """
    if self.execution is None:
        raise ValueError("Execution is not initialized. Please create an execution before calling this method.")
    directory_path = os.path.join(self.ARTIFACTS_PATH, self.execution.properties["Execution_uuid"].string_value.split(',')[0], self.DATASLICE_PATH)
    name = os.path.join(directory_path, name)
    df = pd.read_parquet(name)
    temp_dict = df.to_dict("index")
    temp_dict[record].update(custom_properties)
    dataslice_df = pd.DataFrame.from_dict(temp_dict, orient="index")
    dataslice_df.index.names = ["Path"]
    dataslice_df.to_parquet(name)

This module contains all the public API for CMF

cmf_init_show()

Initializes and shows details of the CMF command. Example:

     result = cmf_init_show() 
Returns: Output from the _cmf_cmd_init function.

Source code in cmflib/cmf.py
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
def cmf_init_show():
    """ Initializes and shows details of the CMF command. 
    Example: 
    ```python 
         result = cmf_init_show() 
    ``` 
    Returns: 
       Output from the _cmf_cmd_init function. 
    """
    output=_cmf_cmd_init()
    return output

cmf_init(type='', path='', git_remote_url='', cmf_server_url='', neo4j_user='', neo4j_password='', neo4j_uri='', url='', endpoint_url='', access_key_id='', secret_key='', session_token='', user='', password='', port=0, osdf_path='', osdf_cache='', key_id='', key_path='', key_issuer='')

Initializes the CMF configuration based on the provided parameters. Example:

   cmf_init( type="local", 
             path="/path/to/re",
             git_remote_url="git@github.com:user/repo.git",
             cmf_server_url="http://cmf-server"
             neo4j_user", 
             neo4j_password="password",
             neo4j_uri="bolt://localhost:76"
           )
Args: type: Type of repository ("local", "minioS3", "amazonS3", "sshremote", "osdfremote") path: Path for the local repository. git_remote_url: Git remote URL for version control. cmf_server_url: CMF server URL. neo4j_user: Neo4j database username. neo4j_password: Neo4j database password. neo4j_uri: Neo4j database URI. url: URL for MinioS3 or AmazonS3. endpoint_url: Endpoint URL for MinioS3. access_key_id: Access key ID for MinioS3 or AmazonS3. secret_key: Secret key for MinioS3 or AmazonS3. session_token: Session token for AmazonS3. user: SSH remote username. password: SSH remote password. port: SSH remote port. osdf_path: OSDF Origin Path. osdf_cache: OSDF Cache Path (Optional). key_id: OSDF Key ID. key_path: OSDF Private Key Path. key_issuer: OSDF Key Issuer URL. Returns: Output based on the initialized repository type.

Source code in cmflib/cmf.py
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
def cmf_init(type: str = "",
        path: str = "",
        git_remote_url: str = "",
        cmf_server_url: str = "",
        neo4j_user: str = "",
        neo4j_password: str = "",
        neo4j_uri: str = "",
        url: str = "",
        endpoint_url: str = "",
        access_key_id: str = "",
        secret_key: str = "",
        session_token: str = "",
        user: str = "",
        password: str = "",
        port: int = 0,
        osdf_path: str = "",
        osdf_cache: str = "",
        key_id: str = "",
        key_path: str = "",
        key_issuer: str = "",
         ):

    """ Initializes the CMF configuration based on the provided parameters. 
    Example:
    ```python
       cmf_init( type="local", 
                 path="/path/to/re",
                 git_remote_url="git@github.com:user/repo.git",
                 cmf_server_url="http://cmf-server"
                 neo4j_user", 
                 neo4j_password="password",
                 neo4j_uri="bolt://localhost:76"
               )
    ```
    Args: 
       type: Type of repository ("local", "minioS3", "amazonS3", "sshremote", "osdfremote")
       path: Path for the local repository. 
       git_remote_url: Git remote URL for version control.
       cmf_server_url: CMF server URL.
       neo4j_user: Neo4j database username.
       neo4j_password: Neo4j database password.
       neo4j_uri: Neo4j database URI.
       url: URL for MinioS3 or AmazonS3.
       endpoint_url: Endpoint URL for MinioS3.
       access_key_id: Access key ID for MinioS3 or AmazonS3.
       secret_key: Secret key for MinioS3 or AmazonS3. 
       session_token: Session token for AmazonS3.
       user: SSH remote username.
       password: SSH remote password. 
       port: SSH remote port.
       osdf_path: OSDF Origin Path.
       osdf_cache: OSDF Cache Path (Optional).
       key_id: OSDF Key ID.
       key_path: OSDF Private Key Path.
       key_issuer: OSDF Key Issuer URL.
    Returns:
       Output based on the initialized repository type.
    """

    if type == "":
        return print("Error: Type is not provided")
    if type not in ["local","minioS3","amazonS3","sshremote","osdfremote"]:
        return print("Error: Type value is undefined"+ " "+type+".Expected: "+",".join(["local","minioS3","amazonS3","sshremote","osdfremote"]))

    if neo4j_user != "" and  neo4j_password != "" and neo4j_uri != "":
        pass
    elif neo4j_user == "" and  neo4j_password == "" and neo4j_uri == "":
        pass
    else:
        return print("Error: Enter all neo4j parameters.") 

    args={'path': path,
        'git_remote_url': git_remote_url,
        'url': url,
        'endpoint_url': endpoint_url,
        'access_key_id': access_key_id,
        'secret_key': secret_key,
        'session_token': session_token,
        'user': user,
        'password': password,
        'osdf_path': osdf_path,
        'osdf_cache': osdf_cache,
        'key_id': key_id,
        'key_path': key_path, 
        'key-issuer': key_issuer,
        }

    status_args=non_related_args(type, args)

    if type == "local" and path != "" and  git_remote_url != "" :
        """Initialize local repository"""
        output = _init_local(
            path, 
            git_remote_url, 
            cmf_server_url, 
            neo4j_user, 
            neo4j_password, 
            neo4j_uri
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")
        return output

    elif type == "minioS3" and url != "" and endpoint_url != "" and access_key_id != "" and secret_key != "" and git_remote_url != "":
        """Initialize minioS3 repository"""
        output = _init_minioS3(
            url,
            endpoint_url,
            access_key_id,
            secret_key,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")
        return output

    elif type == "amazonS3" and url != "" and access_key_id != "" and secret_key != "" and git_remote_url != "":
        """Initialize amazonS3 repository"""
        output = _init_amazonS3(
            url,
            access_key_id,
            secret_key,
            session_token,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")

        return output

    elif type == "sshremote" and path != "" and user != "" and port != 0 and password != "" and git_remote_url != "":
        """Initialize sshremote repository"""
        output = _init_sshremote(
            path,
            user,
            port,
            password,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")

        return output

    elif type == "osdfremote" and osdf_path != "" and key_id != "" and key_path != "" and key_issuer != "" and git_remote_url != "":
        """Initialize osdfremote repository"""
        output = _init_osdfremote(
            osdf_path,
            osdf_cache,
            key_id,
            key_path,
            key_issuer,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")

        return output

    else:
        print("Error: Enter all arguments")

metadata_push(pipeline_name, file_name='./mlmd', tensorboard_path='', execution_uuid='')

Pushes metadata file to CMF-server. Example:

     result = metadata_push("example_pipeline", "mlmd_file", "eg_execution_uuid", "tensorboard_log")
Args: pipeline_name: Name of the pipeline. file_name: Specify input metadata file name. execution_uuid: Optional execution UUID. tensorboard_path: Path to tensorboard logs.

Returns:

Type Description

Response output from the _metadata_push function.

Source code in cmflib/cmf.py
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
def metadata_push(pipeline_name: str, file_name = "./mlmd", tensorboard_path: str = "", execution_uuid: str = ""):
    """ Pushes metadata file to CMF-server.
    Example:
    ```python
         result = metadata_push("example_pipeline", "mlmd_file", "eg_execution_uuid", "tensorboard_log")
    ```
    Args:
        pipeline_name: Name of the pipeline.
        file_name: Specify input metadata file name.
        execution_uuid: Optional execution UUID.
        tensorboard_path: Path to tensorboard logs.

    Returns:
        Response output from the _metadata_push function.
    """
    # Required arguments: pipeline_name
    # Optional arguments: execution_UUID, file_name, tensorboard_path
    output = _metadata_push(pipeline_name, file_name, execution_uuid, tensorboard_path)
    return output

metadata_pull(pipeline_name, file_name='./mlmd', execution_uuid='')

Pulls metadata file from CMF-server. Example:

     result = metadata_pull("example_pipeline", "./mlmd_directory", "eg_execution_uuid") 
Args: pipeline_name: Name of the pipeline. file_name: Specify output metadata file name. execution_uuid: Optional execution UUID. Returns: Message from the _metadata_pull function.

Source code in cmflib/cmf.py
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
def metadata_pull(pipeline_name: str, file_name = "./mlmd", execution_uuid: str = ""):
    """ Pulls metadata file from CMF-server. 
     Example: 
     ```python 
          result = metadata_pull("example_pipeline", "./mlmd_directory", "eg_execution_uuid") 
     ``` 
     Args: 
        pipeline_name: Name of the pipeline. 
        file_name: Specify output metadata file name.
        execution_uuid: Optional execution UUID. 
     Returns: 
        Message from the _metadata_pull function. 
     """
    # Required arguments: pipeline_name 
    # Optional arguments: execution_UUID, file_name 
    output = _metadata_pull(pipeline_name, file_name, execution_uuid)
    return output

metadata_export(pipeline_name, json_file_name='', file_name='./mlmd')

Export local mlmd's metadata in json format to a json file. Example:

     result = metadata_pull("example_pipeline", "./jsonfile", "./mlmd_directory") 
Args: pipeline_name: Name of the pipeline. json_file_name: File path of json file. file_name: Specify input metadata file name. Returns: Message from the _metadata_export function.

Source code in cmflib/cmf.py
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
def metadata_export(pipeline_name: str, json_file_name: str = "", file_name = "./mlmd"):
    """ Export local mlmd's metadata in json format to a json file. 
     Example: 
     ```python 
          result = metadata_pull("example_pipeline", "./jsonfile", "./mlmd_directory") 
     ``` 
     Args: 
        pipeline_name: Name of the pipeline. 
        json_file_name: File path of json file. 
        file_name: Specify input metadata file name. 
     Returns: 
        Message from the _metadata_export function. 
     """
    # Required arguments: pipeline_name 
    # Optional arguments: json_file_name, file_name
    output = _metadata_export(pipeline_name, json_file_name, file_name)
    return output

artifact_pull(pipeline_name, file_name='./mlmd')

Pulls artifacts from the initialized repository. Example:

     result = artifact_pull("example_pipeline", "./mlmd_directory")
Args: pipeline_name: Name of the pipeline. file_name: Specify input metadata file name. Returns: Output from the _artifact_pull function.

Source code in cmflib/cmf.py
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
def artifact_pull(pipeline_name: str, file_name = "./mlmd"):
    """ Pulls artifacts from the initialized repository.
    Example:
    ```python
         result = artifact_pull("example_pipeline", "./mlmd_directory")
    ```
    Args:
        pipeline_name: Name of the pipeline.
        file_name: Specify input metadata file name.
    Returns:
        Output from the _artifact_pull function.
    """
    # Required arguments: pipeline_name
    # Optional arguments: file_name
    output = _artifact_pull(pipeline_name, file_name)
    return output

artifact_pull_single(pipeline_name, file_name, artifact_name)

Pulls a single artifact from the initialized repository. Example:

    result = artifact_pull_single("example_pipeline", "./mlmd_directory", "example_artifact") 
Args: pipeline_name: Name of the pipeline. file_name: Specify input metadata file name. artifact_name: Name of the artifact. Returns: Output from the _artifact_pull_single function.

Source code in cmflib/cmf.py
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
def artifact_pull_single(pipeline_name: str, file_name: str, artifact_name: str):
    """ Pulls a single artifact from the initialized repository. 
    Example: 
    ```python 
        result = artifact_pull_single("example_pipeline", "./mlmd_directory", "example_artifact") 
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       file_name: Specify input metadata file name.
       artifact_name: Name of the artifact. 
    Returns:
       Output from the _artifact_pull_single function. 
    """
    # Required arguments: pipeline_name
    # Optional arguments: file_name, artifact_name
    output = _artifact_pull_single(pipeline_name, file_name, artifact_name)
    return output

artifact_push(pipeline_name, file_name='./mlmd')

Pushes artifacts to the initialized repository. Example:

     result = artifact_push("example_pipeline", "./mlmd_directory")
Args: pipeline_name: Name of the pipeline. file_name: Specify input metadata file name. Returns: Output from the _artifact_push function.

Source code in cmflib/cmf.py
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
def artifact_push(pipeline_name: str, file_name = "./mlmd"):
    """ Pushes artifacts to the initialized repository.
    Example:
    ```python
         result = artifact_push("example_pipeline", "./mlmd_directory")
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       file_name: Specify input metadata file name.
    Returns:
        Output from the _artifact_push function.
    """
    # Required arguments: pipeline_name
    # Optional arguments: file_name
    output = _artifact_push(pipeline_name, file_name)
    return output

artifact_list(pipeline_name, file_name='./mlmd', artifact_name='')

Displays artifacts from the input metadata file with a few properties in a 7-column table, limited to 20 records per page. Example:

    result = _artifact_list("example_pipeline", "./mlmd_directory", "example_artifact_name") 
Args: pipeline_name: Name of the pipeline. file_name: Specify input metadata file name. artifact_name: Artifacts for particular artifact name. Returns: Output from the _artifact_list function.

Source code in cmflib/cmf.py
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
def artifact_list(pipeline_name: str, file_name = "./mlmd", artifact_name: str = ""):
    """ Displays artifacts from the input metadata file with a few properties in a 7-column table, limited to 20 records per page.
    Example: 
    ```python 
        result = _artifact_list("example_pipeline", "./mlmd_directory", "example_artifact_name") 
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       file_name: Specify input metadata file name. 
       artifact_name: Artifacts for particular artifact name.
    Returns:
       Output from the _artifact_list function. 
    """
    # Required arguments: pipeline_name
    # Optional arguments: file_name, artifact_name
    output = _artifact_list(pipeline_name, file_name, artifact_name)
    return output

pipeline_list(file_name='./mlmd')

Display a list of pipeline name(s) from the available input metadata file.

Example:

     result = _pipeline_list("./mlmd_directory")
Args: file_name: Specify input metadata file name. Returns: Output from the _pipeline_list function.

Source code in cmflib/cmf.py
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
def pipeline_list(file_name = "./mlmd"):
    """ Display a list of pipeline name(s) from the available input metadata file.

    Example:
    ```python
         result = _pipeline_list("./mlmd_directory")
    ```
    Args:
        file_name: Specify input metadata file name.
    Returns:
        Output from the _pipeline_list function.
    """
    # Optional arguments: file_name( path to store the MLMD file)
    output = _pipeline_list(file_name)
    return output

execution_list(pipeline_name, file_name='./mlmd', execution_uuid='')

Displays executions from the input metadata file with a few properties in a 7-column table, limited to 20 records per page. Example:

    result = _execution_list("example_pipeline", "./mlmd_directory", "example_execution_uuid") 
Args: pipeline_name: Name of the pipeline. file_name: Specify input metadata file name. execution_uuid: Specify the execution uuid to retrieve execution. Returns: Output from the _execution_list function.

Source code in cmflib/cmf.py
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
def execution_list(pipeline_name: str, file_name = "./mlmd", execution_uuid: str = ""):
    """Displays executions from the input metadata file with a few properties in a 7-column table, limited to 20 records per page.
    Example: 
    ```python 
        result = _execution_list("example_pipeline", "./mlmd_directory", "example_execution_uuid") 
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       file_name: Specify input metadata file name.
       execution_uuid: Specify the execution uuid to retrieve execution.
    Returns:
       Output from the _execution_list function. 
    """
    # Required arguments: pipeline_name
    # Optional arguments: file_name, execution_uuid
    output = _execution_list(pipeline_name, file_name, execution_uuid)
    return output

repo_push(pipeline_name, file_name='./mlmd', tensorboard_path='', execution_uuid='')

Push artifacts, metadata files, and source code to the user's artifact repository, cmf-server, and git respectively. Example:

    result = _repo_push("example_pipeline", "./mlmd_directory", "example_execution_uuid", "./tensorboard_path") 
Args: pipeline_name: Name of the pipeline. file_name: Specify input metadata file name. execution_uuid: Specify execution uuid. tensorboard_path: Path to tensorboard logs. Returns: Output from the _repo_push function.

Source code in cmflib/cmf.py
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
def repo_push(pipeline_name: str, file_name = "./mlmd", tensorboard_path: str = "", execution_uuid: str = ""):
    """ Push artifacts, metadata files, and source code to the user's artifact repository, cmf-server, and git respectively.
    Example: 
    ```python 
        result = _repo_push("example_pipeline", "./mlmd_directory", "example_execution_uuid", "./tensorboard_path") 
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       file_name: Specify input metadata file name.
       execution_uuid: Specify execution uuid.
       tensorboard_path: Path to tensorboard logs.
    Returns:
       Output from the _repo_push function. 
    """
    # Required arguments: pipeline_name
    # Optional arguments: file_name, execution_uuid, tensorboard_path
    output = _repo_push(pipeline_name, file_name, execution_uuid, tensorboard_path)
    return output

repo_pull(pipeline_name, file_name='./mlmd', execution_uuid='')

Pull artifacts, metadata files, and source code from the user's artifact repository, cmf-server, and git respectively. Example:

    result = _repo_pull("example_pipeline", "./mlmd_directory", "example_execution_uuid") 
Args: pipeline_name: Name of the pipeline. file_name: Specify output metadata file name. execution_uuid: Specify execution uuid. Returns: Output from the _repo_pull function.

Source code in cmflib/cmf.py
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
def repo_pull(pipeline_name: str, file_name = "./mlmd", execution_uuid: str = ""):
    """ Pull artifacts, metadata files, and source code from the user's artifact repository, cmf-server, and git respectively.
    Example: 
    ```python 
        result = _repo_pull("example_pipeline", "./mlmd_directory", "example_execution_uuid") 
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       file_name: Specify output metadata file name.
       execution_uuid: Specify execution uuid.
    Returns:
       Output from the _repo_pull function. 
    """
    # Required arguments: pipeline_name
    # Optional arguments: file_name, execution_uuid
    output = _repo_pull(pipeline_name, file_name, execution_uuid)
    return output