.. _mainconf_ref: Main Configuration File ======================= Description of the three top-level configuration objects used by the environment loader: - **data_center_configuration** (object) - **hvac_configuration** (object) - **server_characteristics** (object) Field Reference --------------- data_center_configuration (object) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **NUM_ROWS** (integer) Number of rack rows in each hall. **NUM_RACKS_PER_ROW** (integer) Number of racks in each row. **RACK_SUPPLY_APPROACH_TEMP_LIST** (list of floats) Supply-air approach temperatures (°C) for each rack; list length must equal NUM_ROWS × NUM_RACKS_PER_ROW. **RACK_RETURN_APPROACH_TEMP_LIST** (list of floats) Return-air approach temperatures (°C) for each rack; same length and order as the supply list. **CPUS_PER_RACK** (integer) Number of CPU cores per rack. **GPUS_PER_RACK** (integer) Number of GPU devices per rack. hvac_configuration (object) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **C_AIR** (float) Specific heat capacity of air (J·kg⁻¹·K⁻¹). **RHO_AIR** (float) Air density (kg·m⁻³). **CRAC_SUPPLY_AIR_FLOW_RATE_pu** (float) CRAC unit supply air flow rate (per unit). **CRAC_REFRENCE_AIR_FLOW_RATE_pu** (float) Reference supply air flow rate for CRAC (per unit). **CRAC_FAN_REF_P** (float) Reference fan power for CRAC (W). **CHILLER_COP_BASE** (float) Base coefficient of performance for the chiller. **CHILLER_COP_K** (float) Temperature coefficient for chiller COP. **CHILLER_COP_T_NOMINAL** (float) Nominal temperature (°C) for COP calculation. **CT_FAN_REF_P** (float) Reference fan power for cooling tower (W). **CT_REFRENCE_AIR_FLOW_RATE** (float) Reference air flow rate for cooling tower (m³·s⁻¹). **CW_PRESSURE_DROP** (float) Pressure drop in condenser water loop (Pa). **CW_WATER_FLOW_RATE** (float) Water flow rate in condenser water loop (m³·s⁻¹). **CW_PUMP_EFFICIENCY** (float) Pump efficiency of condenser water loop. **CT_PRESSURE_DROP** (float) Pressure drop in cooling tower water loop (Pa). **CT_WATER_FLOW_RATE** (float) Water flow rate in cooling tower loop (m³·s⁻¹). **CT_PUMP_EFFICIENCY** (float) Pump efficiency of cooling tower loop. server_characteristics (object) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Controls power and airflow profiles for servers (CPU and GPU). Defaults and fallbacks are described below. CPU Profile ------------ The system's default CPU profiles are [130 W, 10 W], [110 W, 10 W] and [170 W, 10 W]. If the `DEFAULT_CPU_POWER_CHARACTERISTICS` array is omitted entirely, the loader falls back to the HP PROLIANT profile. GPU Profiles ------------ The system’s default GPU profiles are P100 and A6000. If the `DEFAULT_GPU_POWER_CHARACTERISTICS` array is omitted entirely, the loader falls back to the V100 profile. **NVIDIA_P100** (list of two integers) Maximum power consumption: 250 W [1]_ Idle power consumption: 25 W [2]_ **NVIDIA_A6000** (list of two integers) Maximum power consumption: 250 W [3]_ Idle power consumption: 22 W [4]_ Fallback Profile ---------------- **NVIDIA_V100** (list of two integers) Maximum power consumption: 300 W [5]_ Idle power consumption: 70 W [6]_ **HP_PROLIANT** (list of two integers) Maximum power consumption: 170 W [5]_ Idle power consumption: 110 W [6]_ References ---------- .. [1] NVIDIA Corporation (2016) *NVIDIA Tesla P100 PCIe Data Sheet* [PDF]. Available at: https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf .. [2] Ali, G., Bhalachandra, S., Wright, N., Sill, A. and Che, Y. (2020) *Evaluation of power counters and controls on general-purpose GPUs*. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’20), Poster. Available at: https://sc20.supercomputing.org/proceedings/tech_poster/poster_files/rpost131s2-file2.pdf .. [3] NVIDIA Corporation (2023) *vGPU A16 Data Center Solutions Data Sheet* [PDF]. Available at: https://images.nvidia.com/content/Solutions/data-center/vgpu-a16-datasheet.pdf .. [4] Khandelwal, S., Wadhwa, E. and Shreejith, S. (2022) ‘Deep Learning-based Embedded Intrusion Detection System for Automotive CAN’, in *Proceedings of the IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP)*, Gothenburg, Sweden, pp. 88–92. doi: 10.1109/ASAP54787.2022.00023. .. [5] NVIDIA Corporation (2018) *Tesla V100 Data Sheet* [PDF]. Available at: https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf .. [6] You, J., Chung, J.-W. and Chowdhury, M. (2023) ‘Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training’, in Balakrishnan, M. and Ghobadi, M. (eds.) *Proceedings of the 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2023)*, Boston, MA, April 17–19, 2023. USENIX Association, pp. 119–139. Available at: https://www.usenix.org/conference/nsdi23/presentation/you (Accessed: [date]).