
< Linux Wireless LAN Howto >
Wireless Extensions for Linux

Jean Tourrilhes

23 January 97

A Wireless LAN API for the Linux operating system.

1 Introduction
The purpose of this document is to give an overview of the Wireless

Extensions. The first part will explain the reason of this development and the
generals ideas behind this work. Then, we will give the current status of the
development. The third part will explore the user interface. We will finish by some
implementation details and the possible evolution of the Wireless Extensions.

This document is a part of the Linux Wireless LAN Howto. Please refer to it
for details.

2 Philosophy & Goal
It all started when I tried to install a Wavelan network on Linux computers.

I was having a ISA and a PCMCIA versions of the Wavelan, and the two drivers
were using totally different methods for the setup and collection of statistics (and
in fact fairly incomplete...). As my small hard disks didn’t allow me to reboot to
DOS to set up those missing parameters, I started to modify the driver code.

I decided to define a wireless API which would allow the user to manipulate
any wireless networking device in a standard and uniform way. Of course, those
devices are fundamentally different, so the standardisation would only be on the
methods but not on the values (a Network ID is always a parameter that you may
set and get and use to distinguish logical networks, but some devices might use
4 bits and others 16 bits, and the effect of a change may be immediate or delayed
after a reconfiguration of the device...).

This interface would need to be flexible and extensible. The primary need was
for device configuration, but wireless statistics and the development of
wireless aware applications was desirable. I needed also something simple to
implement and conform to the Linux standard to have something much easier to
share and maintain. The interface would need to evolve with the apparition of new
products and with specific needs.

I tried to be as generic as possible, but I was obliged to restrict myself on a
specific set of devices. I focused on the Wireless LAN type of devices (indoor radio
networks), which appears in the operating system as a normal network device.
AX25 (Amateur Radio) devices are too specific and have already their own specific
network stack and tools. I also ruled out cellular data (data over GSM and mobile
phone) and medium and long distance wireless communications because their
interface are quite different and they don’t operate in the same way. InfraRed
1

< Linux Wireless LAN Howto >
should be similar enough to Radio LANs to benefit from this interface (if someday
an InfraRed network driver for Linux appears).

As it was only an extension to the current Linux networking interface, I
decided to call it “Wireless Extensions”. The words interface and API are too
ambitious for this simple set of tools.

3 Availability
The wireless extensions have been implemented in three complementary

parts. The first part is the user interface, a set of tools to manipulate those
extensions. The second part is a modification of the Linux kernel to support and
define the extensions. The third part is the hardware interface and is implemented
in each network driver itself to map the extensions to the actual hardware
manipulations.

The kernel modifications have been included in the last Linux releases (from
2.0.30 and 2.1.17) and so the kernel now supports them. Users of release 1.2.13
may use a patch to add the support in their kernels. By default, the wireless
extensions are disabled, and users need to enable the CONFIG_NET_RADIO
option in the kernel configuration (this is the option which enables the choice of
radio interfaces in the network driver list).

The tools are quite simple and so should be able to compile in any Linux
system provided that the kernel supports wireless extensions.

The modifications of the wireless network drivers are probably the most
important. Each driver needs to support wireless extensions and to perform the
corresponding dialogue with the specific hardware. For now, only the Wavelan ISA
and the Wavelan PCMCIA drivers support wireless extensions, but I’m confident
that others will eventually follow. The modified Wavelan PCMCIA driver is
available in the last pcmcia packages (from 2.9.1). The modified Wavelan ISA
driver is available in the kernel (from 2.0.30 and 2.1.17).

4 User interface and tools
The user interface is composed of 3 programs and a /proc entry. The main goal

of the Wireless Extension development effort wasn’t the user interface, so this
interface is quite basic.

4.1 /proc/net/wireless
This is a /proc entry. /proc is a pseudo file system giving information and

statistics about the current system, which is usually located in /proc. These entries
act as files, so a cat on them will give the required information. /proc/net/wireless
is designed to give some wireless specific statistics on each wireless interface in the
system. This entry is in fact a clone of /proc/net/dev which gives the standard driver
statistics.

The output looks like this :

<jean@tourrilhes>cat /proc/net/wireless
Inter-|sta| Quality | Discarded packets
2

< Linux Wireless LAN Howto >
 face |tus|link level noise| nwid crypt misc
 eth2: f0 15. 24. 4. 181 0 0

For each device, the following information is given :
• Status : Its current state. This is a device dependent information.
• Quality - link : general quality of the reception.
• Quality - level : signal strength at the receiver.
• Quality - noise : silence level (no packet) at the receiver.
• Discarded - nwid : number of discarded packets due to invalid network id.
• Discarded - crypt : number of packet unable to decrypt.
• Discarded - misc : unused (for now).

These informations allow the user to have a better feedback about his system.
A high value of Discarded - nwid packet might indicate a nwid configuration
problem or an adjacent network. The Quality - level might help him to track
shadow areas.

The basic difference between Quality - link and Quality - level is that the first
indicate how good the reception is (for example the percentage of correctly received
packets) and the second how strong the signal is. The Quality - level is some
directly measurable data that is likely to have the same signification across
devices.

When the Quality values have been updated since the last read of the entry,
a dot will follow that value (typically, it mean that a new measure has been made).

4.2 iwconfig
This tool is designed to configure all the wireless specific parameters of the

driver and the hardware. This is a clone of ifconfig used for standard device
configuration. The following parameters are available :

• freq or channel : the frequency or the channel sequence.
• nwid : network id or domain, to distinguish different logical networks.
• the name of the “protocol” used on the air.
• sens : this is the signal level threshold to trigger packet reception (sensitivity).
• enc : the encryption or scrambling key used.

The frequency or channel parameter is the physical separation between
networks (the keyword freq and channel are synonymous). For frequency hopping
devices, it might be the hopping pattern. On the other hand, the nwid is only a
logical (virtual) separation between networks which might be on the same
frequency.

The name of the protocol is often the generic name of the device itself (for
example “Wavelan”). This is quite useful because these protocols are all
incompatible. The apparition of standards such as 802.11 and HiperLan might
help a bit in the future.
3

< Linux Wireless LAN Howto >
The encryption setting includes the key itself (up to 64 bits), the activation of
encryption (on/off) and an optional argument (either the type of algorithm or the
key number for multi key systems).

Without any argument, iwconfig gives the value of these parameters (and
the content of /proc/net/wireless) :

<jean@tourrilhes>iwconfig
lo no wireless extensions.

eth1 no wireless extensions.

eth2 Wavelan NWID:1234 Frequency:2.422GHz Sensitivity:4
 Link quality:15/15 Signal level:22/63 Noise level:0/63
 Rx invalid nwid:181 invalid crypt:0 invalid misc:0

By giving a command line option, the user may change these parameters (if it
is possible in the driver and if the user is root). For example, to change the
frequency to 2.462 GHz and disable nwid checking on the device eth2, the user will
do :

#iwconfig eth2 freq 2.462G nwid off

The user may also list the available frequencies for a specific device or the
number of channels defined :

<jean@tourrilhes>iwconfig eth2 list_freq
10 channels ; available frequencies : 2.422GHz 2.425GHz 2.4305GHz 2.432GHz
2.442GHz 2.452GHz 2.46GHz 2.462GHz

4.3 iwspy
iwspy was designed to test the Mobile IP support. It allows the user to set a

list of network addresses in the driver. The driver will gather quality information
for each of those addresses (updated each time it receives a packet from that
address). The tool allows the user to display the information associated with each
address in the list.

iwspy accept IP address as well as hardware addresses (MAC). IP addresses
will be converted to hardware addresses before being transmitted to the driver. No
verification is made on the hardware address. On the command line, hardware
addresses should be prefixed by the keyword hw :

#iwspy eth2 15.144.104.4 hw 08:00:0E:21:3A:1F

The tool accept the keyword “+” to add the new addresses at the end of the
list :

#iwspy eth2 + hw 08:00:0E:2A:26:FA

To display the list of address :
4

< Linux Wireless LAN Howto >
<jean@tourrilhes>iwspy eth2
08:00:0E:21:D7:4E : Quality 15 ; Signal 29 ; Noise 0 (updated)
08:00:0E:21:3A:1F : Quality 0 ; Signal 0 ; Noise 0
08:00:0E:2A:26:FA : Quality 0 ; Signal 0 ; Noise 0

The (updated) indication show that we have received a packet since we set the
address in the driver. We haven’t received anything from the second and third
address (this explain why the values are 0). A ping to those address should solve
the problem.

The number of addresses is limited to 8, because each address slow down the
driver (it increases the processing for each received packets).

4.4 iwpriv
iwpriv is some experimental support for device specific extensions. Some

drivers (like the Wavelan one) might define some extra parameters or
functionality, iwpriv is used to manipulate those.

5 Driver interface & programming issues
The implementation of the wireless extensions was designed to minimise the

number of changes in the kernel and to have a simple and extensible solution.
All the wireless interface (types and constants) is defined in the file /usr/

include/linux/wireless.h. This is the central piece of the wireless extension.

5.1 /proc/net/wireless
This /proc entry is a clone of the /proc/net/dev entry and has been

implemented in exactly the same way.
The Linux networking stack uses a structure (struct device) to keep track of

each device in the system. The first part of it is standardised, and contains
parameters (for example the base I/O address and the IP address of the device) and
callbacks (the procedure to start the device, to send a packet...).

I’ve added to this structure another standard callback (get_wireless_stats) to
get the wireless statistics that /proc/net/wireless needs. When the /proc entry is
read, it calls this callback for all the devices present in the system and display the
information it gets. If a device doesn’t define this callback, it is ignored.

When called, the get_wireless_stats callback returns a structure (struct
iw_statistics) containing all the fields that will be displayed by the /proc entry. This
structure is of course defined in the file /usr/include/linux/wireless.h.

5.2 ioctl
The usual method in Unix to set and get parameters from a network device is

through ioctl. Ioctl are usually operations performed on a file descriptor, but they
also apply on network sockets. The ioctl is a kernel system call. The arguments of
the ioctl define the operations to be done, the parameters of these operations and
the device they applies to.
5

< Linux Wireless LAN Howto >
For example, to change the IP address on device eth2, a program (like
ifconfig) would make an ioctl call with the following parameters : “eth2”,
SIOCSIFADDR, new address. The structure defining the parameters layout may
be found in /usr/include/linux/if.h and the ioctl call (the constant SIOCSIFADDR)
is defined in /usr/include/linux/sockios.h.

For the wireless extensions, I’ve defined a new set of ioctl calls (for example
SIOCSIWFREQ to change the frequency). I’ve also defined the parameters to those
calls (see /usr/include/linux/wireless.h). In fact those new calls map closely to the
functionality offered by the wireless tools.

There is another popular way to set parameters in a network driver in Linux,
which is initialisation parameters (either passed on the kernel command line or at
module initialisation). This method has the disadvantage that the parameters may
only be set (and not read) and only at initialisation time, which offers much less
flexibility than the current solution. The other advantage of ioctl is that it is a
programming interface (and not only a user interface), so any program (such as a
Mobile IP implementation) may manipulate them directly.

5.3 More details
For people who needs more details on the actual implementation, the list of

ioctl calls or the parameters definitions, the ultimate reference is the source code.
The file /usr/include/linux/wireless.h defines all the necessary pieces. The wireless
tools offer some good examples on how to use the ioctl calls. To know how the
wireless extensions are used on the driver side, the Wavelan driver source will
answer most questions.

6 Areas of improvement

6.1 Other drivers
For now, only the Wavelan driver supports the wireless extensions. The

implementation of the Wireless Extensions in other wireless network drivers
might help to validate the Wireless Extensions genericity and to refine its
definition. The problem is that quite few wireless devices have Linux drivers
available.

Also the implementation of wireless extensions in some case is not that easy.
For example, the code to change the frequency in the Wavelan driver is quite large
and complex.

6.2 Users tools
They should be extended and refined. We could also imagine the development

of a graphical interface (for example to have a small graph bar like for battery
charge and system load).

6.3 Wireless Aware applications
The development of wireless aware applications will allow to demonstrate the

concept and to expand the wireless extensions with the needs of those applications.
Mobile IP seems an obvious target.
6

	Wireless Extensions for Linux
	1 Introduction
	2 Philosophy & Goal
	3 Availability
	4 User interface and tools
	4.1 /proc/net/wireless
	4.2 iwconfig
	4.3 iwspy
	4.4 iwpriv

	5 Driver interface & programming issues
	5.1 /proc/net/wireless
	5.2 ioctl
	5.3 More details

	6 Areas of improvement
	6.1 Other drivers
	6.2 Users tools
	6.3 Wireless Aware applications

