cmflib.cmf¶
This class provides methods to log metadata for distributed AI pipelines. The class instance creates an ML metadata store to store the metadata. It creates a driver to store nodes and its relationships to neo4j. The user has to provide the name of the pipeline, that needs to be recorded with CMF.
cmflib.cmf.Cmf(
filepath="mlmd",
pipeline_name="test_pipeline",
custom_properties={"owner": "user_a"},
graph=False
)
neo4j_uri
(graph server URI), neo4j_user
(user name) and
neo4j_password
(user password), e.g.:
cmf init local --path /home/user/local-storage --git-remote-url https://github.com/XXX/exprepo.git --neo4j-user neo4j --neo4j-password neo4j
--neo4j-uri bolt://localhost:7687
Source code in cmflib/cmf.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|
create_context(pipeline_stage, custom_properties=None)
¶
Create's a context(stage). Every call creates a unique pipeline stage. Updates Pipeline_stage name. Example:
#Create context
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create context
context: mlmd.proto.Context = cmf.create_context(
pipeline_stage="prepare",
custom_properties ={"user-metadata1": "metadata_value"}
)
Source code in cmflib/cmf.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
|
create_execution(execution_type, custom_properties=None, cmd=None, create_new_execution=True)
¶
Create execution. Every call creates a unique execution. Execution can only be created within a context, so create_context must be called first. Example:
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create or reuse context for this stage
context: mlmd.proto.Context = cmf.create_context(
pipeline_stage="prepare",
custom_properties ={"user-metadata1": "metadata_value"}
)
# Create a new execution for this stage run
execution: mlmd.proto.Execution = cmf.create_execution(
execution_type="Prepare",
custom_properties = {"split": split, "seed": seed}
)
cmd: command used to run this execution.
create_new_execution:bool = True, This can be used by advanced users to re-use executions
This is applicable, when working with framework code like mmdet, pytorch lightning etc, where the
custom call-backs are used to log metrics.
if create_new_execution is True(Default), execution_type parameter will be used as the name of the execution type.
if create_new_execution is False, if existing execution exist with the same name as execution_type.
it will be reused.
Only executions created with create_new_execution as False will have "name" as a property.
Returns:
Type | Description |
---|---|
Execution
|
Execution object from ML Metadata library associated with the new execution for this stage. |
Source code in cmflib/cmf.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
|
update_execution(execution_id, custom_properties=None)
¶
Updates an existing execution. The custom properties can be updated after creation of the execution. The new custom properties is merged with earlier custom properties. Example
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Update a execution
execution: mlmd.proto.Execution = cmf.update_execution(
execution_id=8,
custom_properties = {"split": split, "seed": seed}
)
Source code in cmflib/cmf.py
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
|
log_dataset(url, event, custom_properties=None, label=None, label_properties=None, external=False)
¶
Logs a dataset as artifact. This call adds the dataset to dvc. The dvc metadata file created (.dvc) will be added to git and committed. The version of the dataset is automatically obtained from the versioning software(DVC) and tracked as a metadata. Example:
artifact: mlmd.proto.Artifact = cmf.log_dataset(
url="/repo/data.xml",
event="input",
custom_properties={"source":"kaggle"}
)
INPUT
OR OUTPUT
.
custom_properties: Dataset properties (key/value pairs).
labels: Labels are usually .csv files containing information regarding the dataset.
label_properties: Custom properties for a label.
Returns:
Artifact object from ML Metadata library associated with the new dataset artifact.
Source code in cmflib/cmf.py
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
|
log_model(path, event, model_framework='Default', model_type='Default', model_name='Default', custom_properties=None)
¶
Logs a model. The model is added to dvc and the metadata file (.dvc) gets committed to git. Example:
artifact: mlmd.proto.Artifact= cmf.log_model(
path="path/to/model.pkl",
event="output",
model_framework="SKlearn",
model_type="RandomForestClassifier",
model_name="RandomForestClassifier:default"
)
INPUT
OR OUTPUT
.
model_framework: Framework used to create the model.
model_type: Type of model algorithm used.
model_name: Name of the algorithm used.
custom_properties: The model properties.
Returns:
Artifact object from ML Metadata library associated with the new model artifact.
Source code in cmflib/cmf.py
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 |
|
log_execution_metrics(metrics_name, custom_properties=None)
¶
Log the metadata associated with the execution (coarse-grained tracking). It is stored as a metrics artifact. This does not have a backing physical file, unlike other artifacts that we have. Example:
exec_metrics: mlpb.Artifact = cmf.log_execution_metrics(
metrics_name="Training_Metrics",
{"auc": auc, "loss": loss}
)
Source code in cmflib/cmf.py
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 |
|
log_metric(metrics_name, custom_properties=None)
¶
Stores the fine-grained (per step or per epoch) metrics to memory.
The metrics provided are stored in a parquet file. The commit_metrics
call add the parquet file in the version
control framework. The metrics written in the parquet file can be retrieved using the read_metrics
call.
Example:
# Can be called at every epoch or every step in the training. This is logged to a parquet file and committed
# at the commit stage.
# Inside training loop
while True:
cmf.log_metric("training_metrics", {"train_loss": train_loss})
cmf.commit_metrics("training_metrics")
Source code in cmflib/cmf.py
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 |
|
create_dataslice(name)
¶
Creates a dataslice object. Once created, users can add data instances to this data slice with add_data method. Users are also responsible for committing data slices by calling the commit method. Example:
dataslice = cmf.create_dataslice("slice-a")
Returns:
Type | Description |
---|---|
DataSlice
|
Instance of a newly created [DataSlice][cmflib.cmf.Cmf.DataSlice]. |
Source code in cmflib/cmf.py
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 |
|
update_dataslice(name, record, custom_properties)
¶
Updates a dataslice record in a Parquet file with the provided custom properties. Example:
dataslice=cmf.update_dataslice("dataslice_file.parquet", "record_id",
{"key1": "updated_value"})
Returns:
Type | Description |
---|---|
None |
Source code in cmflib/cmf.py
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 |
|
This module contains all the public API for CMF
cmf_init_show()
¶
Initializes and shows details of the CMF command. Example:
result = cmf_init_show()
Source code in cmflib/cmf.py
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 |
|
cmf_init(type='', path='', git_remote_url='', cmf_server_url='', neo4j_user='', neo4j_password='', neo4j_uri='', url='', endpoint_url='', access_key_id='', secret_key='', session_token='', user='', password='', port=0, osdf_path='', osdf_cache='', key_id='', key_path='', key_issuer='')
¶
Initializes the CMF configuration based on the provided parameters. Example:
cmf_init( type="local",
path="/path/to/re",
git_remote_url="git@github.com:user/repo.git",
cmf_server_url="http://cmf-server"
neo4j_user",
neo4j_password="password",
neo4j_uri="bolt://localhost:76"
)
Source code in cmflib/cmf.py
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 |
|
metadata_push(pipeline_name, file_name='./mlmd', tensorboard_path='', execution_uuid='')
¶
Pushes metadata file to CMF-server. Example:
result = metadata_push("example_pipeline", "mlmd_file", "eg_execution_uuid", "tensorboard_log")
Returns:
Type | Description |
---|---|
Response output from the _metadata_push function. |
Source code in cmflib/cmf.py
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 |
|
metadata_pull(pipeline_name, file_name='./mlmd', execution_uuid='')
¶
Pulls metadata file from CMF-server. Example:
result = metadata_pull("example_pipeline", "./mlmd_directory", "eg_execution_uuid")
Source code in cmflib/cmf.py
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 |
|
metadata_export(pipeline_name, json_file_name='', file_name='./mlmd')
¶
Export local mlmd's metadata in json format to a json file. Example:
result = metadata_pull("example_pipeline", "./jsonfile", "./mlmd_directory")
Source code in cmflib/cmf.py
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 |
|
artifact_pull(pipeline_name, file_name='./mlmd')
¶
Pulls artifacts from the initialized repository. Example:
result = artifact_pull("example_pipeline", "./mlmd_directory")
Source code in cmflib/cmf.py
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 |
|
artifact_pull_single(pipeline_name, file_name, artifact_name)
¶
Pulls a single artifact from the initialized repository. Example:
result = artifact_pull_single("example_pipeline", "./mlmd_directory", "example_artifact")
Source code in cmflib/cmf.py
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 |
|
artifact_push(pipeline_name, filepath='./mlmd', jobs=32)
¶
Pushes artifacts to the initialized repository. Example:
result = artifact_push("example_pipeline", "./mlmd_directory", 32)
Source code in cmflib/cmf.py
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 |
|
artifact_list(pipeline_name, file_name='./mlmd', artifact_name='')
¶
Displays artifacts from the input metadata file with a few properties in a 7-column table, limited to 20 records per page. Example:
result = _artifact_list("example_pipeline", "./mlmd_directory", "example_artifact_name")
Source code in cmflib/cmf.py
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 |
|
pipeline_list(file_name='./mlmd')
¶
Display a list of pipeline name(s) from the available input metadata file.
Example:
result = _pipeline_list("./mlmd_directory")
Source code in cmflib/cmf.py
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 |
|
execution_list(pipeline_name, file_name='./mlmd', execution_uuid='')
¶
Displays executions from the input metadata file with a few properties in a 7-column table, limited to 20 records per page. Example:
result = _execution_list("example_pipeline", "./mlmd_directory", "example_execution_uuid")
Source code in cmflib/cmf.py
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 |
|
repo_push(pipeline_name, filepath='./mlmd', tensorboard_path='', execution_uuid='', jobs=32)
¶
Push artifacts, metadata files, and source code to the user's artifact repository, cmf-server, and git respectively. Example:
result = _repo_push("example_pipeline", "./mlmd_directory", "example_execution_uuid", "./tensorboard_path", 32)
Source code in cmflib/cmf.py
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 |
|
repo_pull(pipeline_name, file_name='./mlmd', execution_uuid='')
¶
Pull artifacts, metadata files, and source code from the user's artifact repository, cmf-server, and git respectively. Example:
result = _repo_pull("example_pipeline", "./mlmd_directory", "example_execution_uuid")
Source code in cmflib/cmf.py
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 |
|