cmflib.cmf¶
This class provides methods to log metadata for distributed AI pipelines. The class instance creates an ML metadata store to store the metadata. It creates a driver to store nodes and its relationships to neo4j. The user has to provide the name of the pipeline, that needs to be recorded with CMF.
cmflib.cmf.Cmf(
filepath="mlmd",
pipeline_name="test_pipeline",
custom_properties={"owner": "user_a"},
graph=False
)
neo4j_uri
(graph server URI), neo4j_user
(user name) and
neo4j_password
(user password), e.g.:
cmf init local --path /home/user/local-storage --git-remote-url https://github.com/XXX/exprepo.git --neo4j-user neo4j --neo4j-password neo4j
--neo4j-uri bolt://localhost:7687
Source code in cmflib/cmf.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
create_context(pipeline_stage, custom_properties=None)
¶
Create's a context(stage). Every call creates a unique pipeline stage. Updates Pipeline_stage name. Example:
#Create context
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create context
context: mlmd.proto.Context = cmf.create_context(
pipeline_stage="prepare",
custom_properties ={"user-metadata1": "metadata_value"}
)
Source code in cmflib/cmf.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
|
create_execution(execution_type, custom_properties=None, cmd=None, create_new_execution=True)
¶
Create execution. Every call creates a unique execution. Execution can only be created within a context, so create_context must be called first. Example:
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create or reuse context for this stage
context: mlmd.proto.Context = cmf.create_context(
pipeline_stage="prepare",
custom_properties ={"user-metadata1": "metadata_value"}
)
# Create a new execution for this stage run
execution: mlmd.proto.Execution = cmf.create_execution(
execution_type="Prepare",
custom_properties = {"split": split, "seed": seed}
)
cmd: command used to run this execution.
create_new_execution:bool = True, This can be used by advanced users to re-use executions
This is applicable, when working with framework code like mmdet, pytorch lightning etc, where the
custom call-backs are used to log metrics.
if create_new_execution is True(Default), execution_type parameter will be used as the name of the execution type.
if create_new_execution is False, if existing execution exist with the same name as execution_type.
it will be reused.
Only executions created with create_new_execution as False will have "name" as a property.
Returns:
Type | Description |
---|---|
Execution
|
Execution object from ML Metadata library associated with the new execution for this stage. |
Source code in cmflib/cmf.py
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|
update_execution(execution_id, custom_properties=None)
¶
Updates an existing execution. The custom properties can be updated after creation of the execution. The new custom properties is merged with earlier custom properties. Example
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Update a execution
execution: mlmd.proto.Execution = cmf.update_execution(
execution_id=8,
custom_properties = {"split": split, "seed": seed}
)
Source code in cmflib/cmf.py
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
|
log_dataset(url, event, custom_properties=None, external=False)
¶
Logs a dataset as artifact. This call adds the dataset to dvc. The dvc metadata file created (.dvc) will be added to git and committed. The version of the dataset is automatically obtained from the versioning software(DVC) and tracked as a metadata. Example:
artifact: mlmd.proto.Artifact = cmf.log_dataset(
url="/repo/data.xml",
event="input",
custom_properties={"source":"kaggle"}
)
INPUT
OR OUTPUT
.
custom_properties: Dataset properties (key/value pairs).
Returns:
Artifact object from ML Metadata library associated with the new dataset artifact.
Source code in cmflib/cmf.py
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
|
log_model(path, event, model_framework='Default', model_type='Default', model_name='Default', custom_properties=None)
¶
Logs a model. The model is added to dvc and the metadata file (.dvc) gets committed to git. Example:
artifact: mlmd.proto.Artifact= cmf.log_model(
path="path/to/model.pkl",
event="output",
model_framework="SKlearn",
model_type="RandomForestClassifier",
model_name="RandomForestClassifier:default"
)
INPUT
OR OUTPUT
.
model_framework: Framework used to create the model.
model_type: Type of model algorithm used.
model_name: Name of the algorithm used.
custom_properties: The model properties.
Returns:
Artifact object from ML Metadata library associated with the new model artifact.
Source code in cmflib/cmf.py
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 |
|
log_execution_metrics(metrics_name, custom_properties=None)
¶
Log the metadata associated with the execution (coarse-grained tracking). It is stored as a metrics artifact. This does not have a backing physical file, unlike other artifacts that we have. Example:
exec_metrics: mlpb.Artifact = cmf.log_execution_metrics(
metrics_name="Training_Metrics",
{"auc": auc, "loss": loss}
)
Source code in cmflib/cmf.py
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 |
|
log_metric(metrics_name, custom_properties=None)
¶
Stores the fine-grained (per step or per epoch) metrics to memory.
The metrics provided are stored in a parquet file. The commit_metrics
call add the parquet file in the version
control framework. The metrics written in the parquet file can be retrieved using the read_metrics
call.
Example:
# Can be called at every epoch or every step in the training. This is logged to a parquet file and committed
# at the commit stage.
# Inside training loop
while True:
cmf.log_metric("training_metrics", {"train_loss": train_loss})
cmf.commit_metrics("training_metrics")
Source code in cmflib/cmf.py
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 |
|
create_dataslice(name)
¶
Creates a dataslice object. Once created, users can add data instances to this data slice with add_data method. Users are also responsible for committing data slices by calling the commit method. Example:
dataslice = cmf.create_dataslice("slice-a")
Returns:
Type | Description |
---|---|
DataSlice
|
Instance of a newly created [DataSlice][cmflib.cmf.Cmf.DataSlice]. |
Source code in cmflib/cmf.py
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 |
|
update_dataslice(name, record, custom_properties)
¶
Updates a dataslice record in a Parquet file with the provided custom properties. Example:
dataslice=cmf.update_dataslice("dataslice_file.parquet", "record_id",
{"key1": "updated_value"})
Returns:
Type | Description |
---|---|
None |
Source code in cmflib/cmf.py
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 |
|
This module contains all the public API for CMF
cmf_init_show()
¶
Initializes and shows details of the CMF command. Example:
result = cmf_init_show()
Source code in cmflib/cmf.py
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 |
|
cmf_init(type='', path='', git_remote_url='', cmf_server_url='', neo4j_user='', neo4j_password='', neo4j_uri='', url='', endpoint_url='', access_key_id='', secret_key='', session_token='', user='', password='', port=0, osdf_path='', osdf_cache='', key_id='', key_path='', key_issuer='')
¶
Initializes the CMF configuration based on the provided parameters. Example:
cmf_init( type="local",
path="/path/to/re",
git_remote_url="git@github.com:user/repo.git",
cmf_server_url="http://cmf-server"
neo4j_user",
neo4j_password="password",
neo4j_uri="bolt://localhost:76"
)
Source code in cmflib/cmf.py
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 |
|
metadata_push(pipeline_name, filepath='./mlmd', tensorboard_path='', execution_id='')
¶
Pushes MLMD file to CMF-server. Example:
result = metadata_push("example_pipeline", "mlmd_file", "3")
Returns:
Type | Description |
---|---|
Response output from the _metadata_push function. |
Source code in cmflib/cmf.py
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 |
|
metadata_pull(pipeline_name, filepath='./mlmd', execution_id='')
¶
Pulls MLMD file from CMF-server. Example:
result = metadata_pull("example_pipeline", "./mlmd_directory", "execution_123")
Source code in cmflib/cmf.py
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 |
|
artifact_pull(pipeline_name, filepath='./mlmd')
¶
Pulls artifacts from the initialized repository.
Example:
result = artifact_pull("example_pipeline", "./mlmd_directory")
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline_name
|
str
|
Name of the pipeline. |
required |
filepath
|
Path to store artifacts. |
'./mlmd'
|
Returns: Output from the _artifact_pull function.
Source code in cmflib/cmf.py
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 |
|
artifact_pull_single(pipeline_name, filepath, artifact_name)
¶
Pulls a single artifact from the initialized repository. Example:
result = artifact_pull_single("example_pipeline", "./mlmd_directory", "example_artifact")
Source code in cmflib/cmf.py
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 |
|
artifact_push(pipeline_name, filepath='./mlmd')
¶
Pushes artifacts to the initialized repository.
Example:
result = artifact_push("example_pipeline", "./mlmd_directory")
Source code in cmflib/cmf.py
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 |
|