Skip to content

cmflib.cmf

This class provides methods to log metadata for distributed AI pipelines. The class instance creates an ML metadata store to store the metadata. It creates a driver to store nodes and its relationships to neo4j. The user has to provide the name of the pipeline, that needs to be recorded with CMF.

cmflib.cmf.Cmf(
    filepath="mlmd",
    pipeline_name="test_pipeline",
    custom_properties={"owner": "user_a"},
    graph=False
)
Args: filepath: Path to the sqlite file to store the metadata pipeline_name: Name to uniquely identify the pipeline. Note that name is the unique identifier for a pipeline. If a pipeline already exist with the same name, the existing pipeline object is reused. custom_properties: Additional properties of the pipeline that needs to be stored. graph: If set to true, the libray also stores the relationships in the provided graph database. The following variables should be set: neo4j_uri (graph server URI), neo4j_user (user name) and neo4j_password (user password), e.g.:
cmf init local --path /home/user/local-storage --git-remote-url https://github.com/XXX/exprepo.git --neo4j-user neo4j --neo4j-password neo4j
                      --neo4j-uri bolt://localhost:7687

Source code in cmflib/cmf.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def __init__(
        self,
        filepath: str = "mlmd",
        pipeline_name: str = "",
        custom_properties: t.Optional[t.Dict] = None,
        graph: bool = False,
        is_server: bool = False,
    ):
        #path to directory
        self.cmf_init_path = filepath.rsplit("/",1)[0] \
				 if len(filepath.rsplit("/",1)) > 1 \
					else  os.getcwd()

        logging_dir = change_dir(self.cmf_init_path)
        if is_server is False:
            Cmf.__prechecks()
        if custom_properties is None:
            custom_properties = {}
        if not pipeline_name:
            # assign folder name as pipeline name 
            cur_folder = os.path.basename(os.getcwd())
            pipeline_name = cur_folder
        config = mlpb.ConnectionConfig()
        config.sqlite.filename_uri = filepath
        self.store = metadata_store.MetadataStore(config)
        self.filepath = filepath
        self.child_context = None
        self.execution = None
        self.execution_name = ""
        self.execution_command = ""
        self.metrics = {}
        self.input_artifacts = []
        self.execution_label_props = {}
        self.graph = graph
        #last token in filepath
        self.branch_name = filepath.rsplit("/", 1)[-1]

        if is_server is False:
            git_checkout_new_branch(self.branch_name)
        self.parent_context = get_or_create_parent_context(
            store=self.store,
            pipeline=pipeline_name,
            custom_properties=custom_properties,
        )
        if is_server:
            Cmf.__get_neo4j_server_config()
        if graph is True:
            Cmf.__load_neo4j_params()
            self.driver = graph_wrapper.GraphDriver(
                Cmf.__neo4j_uri, Cmf.__neo4j_user, Cmf.__neo4j_password
            )
            self.driver.create_pipeline_node(
                pipeline_name, self.parent_context.id, custom_properties
            )
        os.chdir(logging_dir)

create_context(pipeline_stage, custom_properties=None)

Create's a context(stage). Every call creates a unique pipeline stage. Updates Pipeline_stage name. Example:

#Create context
# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create context
context: mlmd.proto.Context = cmf.create_context(
    pipeline_stage="prepare",
    custom_properties ={"user-metadata1": "metadata_value"}
)
Args: Pipeline_stage: Name of the Stage. custom_properties: Developers can provide key value pairs with additional properties of the execution that need to be stored. Returns: Context object from ML Metadata library associated with the new context for this stage.

Source code in cmflib/cmf.py
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def create_context(
    self, pipeline_stage: str, custom_properties: t.Optional[t.Dict] = None
) -> mlpb.Context:
    """Create's a  context(stage).
    Every call creates a unique pipeline stage.
    Updates Pipeline_stage name.
    Example:
        ```python
        #Create context
        # Import CMF
        from cmflib.cmf import Cmf
        from ml_metadata.proto import metadata_store_pb2 as mlpb
        # Create CMF logger
        cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
        # Create context
        context: mlmd.proto.Context = cmf.create_context(
            pipeline_stage="prepare",
            custom_properties ={"user-metadata1": "metadata_value"}
        )

        ```
        Args:
            Pipeline_stage: Name of the Stage.
            custom_properties: Developers can provide key value pairs with additional properties of the execution that
                need to be stored.
        Returns:
            Context object from ML Metadata library associated with the new context for this stage.
    """
    custom_props = {} if custom_properties is None else custom_properties
    pipeline_stage = self.parent_context.name + "/" + pipeline_stage
    ctx = get_or_create_run_context(
        self.store, pipeline_stage, custom_props)
    self.child_context = ctx
    associate_child_to_parent_context(
        store=self.store, parent_context=self.parent_context, child_context=ctx
    )
    if self.graph:
        self.driver.create_stage_node(
            pipeline_stage, self.parent_context, ctx.id, custom_props
        )
    return ctx

create_execution(execution_type, custom_properties=None, cmd=None, create_new_execution=True)

Create execution. Every call creates a unique execution. Execution can only be created within a context, so create_context must be called first. Example:

# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Create or reuse context for this stage
context: mlmd.proto.Context = cmf.create_context(
    pipeline_stage="prepare",
    custom_properties ={"user-metadata1": "metadata_value"}
)
# Create a new execution for this stage run
execution: mlmd.proto.Execution = cmf.create_execution(
    execution_type="Prepare",
    custom_properties = {"split": split, "seed": seed}
)
Args: execution_type: Type of the execution.(when create_new_execution is False, this is the name of execution) custom_properties: Developers can provide key value pairs with additional properties of the execution that need to be stored.

cmd: command used to run this execution.

create_new_execution:bool = True, This can be used by advanced users to re-use executions
    This is applicable, when working with framework code like mmdet, pytorch lightning etc, where the
    custom call-backs are used to log metrics.
    if create_new_execution is True(Default), execution_type parameter will be used as the name of the execution type.
    if create_new_execution is False, if existing execution exist with the same name as execution_type.
    it will be reused.
    Only executions created with  create_new_execution as False will have "name" as a property.

Returns:

Type Description
Execution

Execution object from ML Metadata library associated with the new execution for this stage.

Source code in cmflib/cmf.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def create_execution(
    self,
    execution_type: str,
    custom_properties: t.Optional[t.Dict] = None,
    cmd: str = None,
    create_new_execution: bool = True,
) -> mlpb.Execution:
    """Create execution.
    Every call creates a unique execution. Execution can only be created within a context, so
    [create_context][cmflib.cmf.Cmf.create_context] must be called first.
    Example:
        ```python
        # Import CMF
        from cmflib.cmf import Cmf
        from ml_metadata.proto import metadata_store_pb2 as mlpb
        # Create CMF logger
        cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
        # Create or reuse context for this stage
        context: mlmd.proto.Context = cmf.create_context(
            pipeline_stage="prepare",
            custom_properties ={"user-metadata1": "metadata_value"}
        )
        # Create a new execution for this stage run
        execution: mlmd.proto.Execution = cmf.create_execution(
            execution_type="Prepare",
            custom_properties = {"split": split, "seed": seed}
        )
        ```
    Args:
        execution_type: Type of the execution.(when create_new_execution is False, this is the name of execution)
        custom_properties: Developers can provide key value pairs with additional properties of the execution that
            need to be stored.

        cmd: command used to run this execution.

        create_new_execution:bool = True, This can be used by advanced users to re-use executions
            This is applicable, when working with framework code like mmdet, pytorch lightning etc, where the
            custom call-backs are used to log metrics.
            if create_new_execution is True(Default), execution_type parameter will be used as the name of the execution type.
            if create_new_execution is False, if existing execution exist with the same name as execution_type.
            it will be reused.
            Only executions created with  create_new_execution as False will have "name" as a property.


    Returns:
        Execution object from ML Metadata library associated with the new execution for this stage.
    """
    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    name_without_extension = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=name_without_extension)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # Initializing the execution related fields

    self.metrics = {}
    self.input_artifacts = []
    self.execution_label_props = {}
    custom_props = {} if custom_properties is None else custom_properties
    git_repo = git_get_repo()
    git_start_commit = git_get_commit()
    cmd = str(sys.argv) if cmd is None else cmd
    python_env=get_python_env()
    self.execution = create_new_execution_in_existing_run_context(
        store=self.store,
        # Type field when re-using executions
        execution_type_name=self.child_context.name,
        execution_name=execution_type, 
        #Name field if we are re-using executions
        #Type field , if creating new executions always 
        context_id=self.child_context.id,
        execution=cmd,
        pipeline_id=self.parent_context.id,
        pipeline_type=self.parent_context.name,
        git_repo=git_repo,
        git_start_commit=git_start_commit,
        python_env=python_env,
        custom_properties=custom_props,
        create_new_execution=create_new_execution,
    )
    uuids = self.execution.properties["Execution_uuid"].string_value
    if uuids:
        self.execution.properties["Execution_uuid"].string_value = uuids+","+str(uuid.uuid1())
    else:
        self.execution.properties["Execution_uuid"].string_value = str(uuid.uuid1())            
    self.store.put_executions([self.execution])
    self.execution_name = str(self.execution.id) + "," + execution_type
    self.execution_command = cmd
    for k, v in custom_props.items():
        k = re.sub("-", "_", k)
        self.execution_label_props[k] = v
    self.execution_label_props["Execution_Name"] = (
        execution_type + ":" + str(self.execution.id)
    )

    self.execution_label_props["execution_command"] = cmd
    if self.graph:
        self.driver.create_execution_node(
        self.execution_name,
        self.child_context.id,
        self.parent_context,
        cmd,
        self.execution.id,
        custom_props,
    )
    os.chdir(logging_dir)
    return self.execution

update_execution(execution_id, custom_properties=None)

Updates an existing execution. The custom properties can be updated after creation of the execution. The new custom properties is merged with earlier custom properties. Example

# Import CMF
from cmflib.cmf import Cmf
from ml_metadata.proto import metadata_store_pb2 as mlpb
# Create CMF logger
cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
# Update a execution
execution: mlmd.proto.Execution = cmf.update_execution(
    execution_id=8,
    custom_properties = {"split": split, "seed": seed}
)
Args: execution_id: id of the execution. custom_properties: Developers can provide key value pairs with additional properties of the execution that need to be updated. Returns: Execution object from ML Metadata library associated with the updated execution for this stage.

Source code in cmflib/cmf.py
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
def update_execution(
    self, execution_id: int, custom_properties: t.Optional[t.Dict] = None
):
    """Updates an existing execution.
    The custom properties can be updated after creation of the execution.
    The new custom properties is merged with earlier custom properties.
    Example
        ```python
        # Import CMF
        from cmflib.cmf import Cmf
        from ml_metadata.proto import metadata_store_pb2 as mlpb
        # Create CMF logger
        cmf = Cmf(filepath="mlmd", pipeline_name="test_pipeline")
        # Update a execution
        execution: mlmd.proto.Execution = cmf.update_execution(
            execution_id=8,
            custom_properties = {"split": split, "seed": seed}
        )
        ```
        Args:
            execution_id: id of the execution.
            custom_properties: Developers can provide key value pairs with additional properties of the execution that
            need to be updated.
        Returns:
            Execution object from ML Metadata library associated with the updated execution for this stage.
    """
    self.execution = self.store.get_executions_by_id([execution_id])[0]
    if self.execution is None:
        print("Error - no execution id")
        return
    execution_type = self.store.get_execution_types_by_id([self.execution.type_id])[
        0
    ]

    if custom_properties:
        for key, value in custom_properties.items():
            if isinstance(value, int):
                self.execution.custom_properties[key].int_value = value
            else:
                self.execution.custom_properties[key].string_value = str(
                    value)
    self.store.put_executions([self.execution])
    c_props = {}
    for k, v in self.execution.custom_properties.items():
        key = re.sub("-", "_", k)
        val_type = str(v).split(":", maxsplit=1)[0]
        if val_type == "string_value":
            val = self.execution.custom_properties[k].string_value
        else:
            val = str(v).split(":")[1]
        # The properties value are stored in the format type:value hence,
        # taking only value
        self.execution_label_props[key] = val
        c_props[key] = val
    self.execution_name = str(self.execution.id) + \
        "," + execution_type.name
    self.execution_command = self.execution.properties["Execution"]
    self.execution_label_props["Execution_Name"] = (
        execution_type.name + ":" + str(self.execution.id)
    )
    self.execution_label_props["execution_command"] = self.execution.properties[
        "Execution"
    ].string_value
    if self.graph:
        self.driver.create_execution_node(
            self.execution_name,
            self.child_context.id,
            self.parent_context,
            self.execution.properties["Execution"].string_value,
            self.execution.id,
            c_props,
        )
    return self.execution

log_dataset(url, event, custom_properties=None, external=False)

Logs a dataset as artifact. This call adds the dataset to dvc. The dvc metadata file created (.dvc) will be added to git and committed. The version of the dataset is automatically obtained from the versioning software(DVC) and tracked as a metadata. Example:

artifact: mlmd.proto.Artifact = cmf.log_dataset(
    url="/repo/data.xml",
    event="input",
    custom_properties={"source":"kaggle"}
)
Args: url: The path to the dataset. event: Takes arguments INPUT OR OUTPUT. custom_properties: Dataset properties (key/value pairs). Returns: Artifact object from ML Metadata library associated with the new dataset artifact.

Source code in cmflib/cmf.py
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
def log_dataset(
    self,
    url: str,
    event: str,
    custom_properties: t.Optional[t.Dict] = None,
    external: bool = False,
) -> mlpb.Artifact:
    """Logs a dataset as artifact.
    This call adds the dataset to dvc. The dvc metadata file created (.dvc) will be added to git and committed. The
    version of the  dataset is automatically obtained from the versioning software(DVC) and tracked as a metadata.
    Example:
        ```python
        artifact: mlmd.proto.Artifact = cmf.log_dataset(
            url="/repo/data.xml",
            event="input",
            custom_properties={"source":"kaggle"}
        )
        ```
    Args:
         url: The path to the dataset.
         event: Takes arguments `INPUT` OR `OUTPUT`.
         custom_properties: Dataset properties (key/value pairs).
    Returns:
        Artifact object from ML Metadata library associated with the new dataset artifact.
    """
    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    name_without_extension = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=name_without_extension)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # create execution if not already created
    if not self.execution:
        self.create_execution(execution_type=name_without_extension)
        assert self.execution is not None, f"Failed to create execution for {self.pipeline_name}!!"

            ### To Do : Technical Debt. 
    # If the dataset already exist , then we just link the existing dataset to the execution
    # We do not update the dataset properties . 
    # We need to append the new properties to the existing dataset properties
    custom_props = {} if custom_properties is None else custom_properties
    git_repo = git_get_repo()
    name = re.split("/", url)[-1]
    event_type = mlpb.Event.Type.OUTPUT
    existing_artifact = []
    if event.lower() == "input":
        event_type = mlpb.Event.Type.INPUT

    commit_output(url, self.execution.id)
    c_hash = dvc_get_hash(url)

    if c_hash == "":
        print("Error in getting the dvc hash,return without logging")
        return

    dataset_commit = c_hash
    dvc_url = dvc_get_url(url)
    dvc_url_with_pipeline = f"{self.parent_context.name}:{dvc_url}"
    url = url + ":" + c_hash
    if c_hash and c_hash.strip:
        existing_artifact.extend(self.store.get_artifacts_by_uri(c_hash))

    # To Do - What happens when uri is the same but names are different
    if existing_artifact and len(existing_artifact) != 0:
        existing_artifact = existing_artifact[0]

        # Quick fix- Updating only the name
        if custom_properties is not None:
            self.update_existing_artifact(
                existing_artifact, custom_properties)
        uri = c_hash
        # update url for existing artifact
        self.update_dataset_url(existing_artifact, dvc_url_with_pipeline)
        artifact = link_execution_to_artifact(
            store=self.store,
            execution_id=self.execution.id,
            uri=uri,
            input_name=url,
            event_type=event_type,
        )
    else:
        # if((existing_artifact and len(existing_artifact )!= 0) and c_hash != ""):
        #   url = url + ":" + str(self.execution.id)
        uri = c_hash if c_hash and c_hash.strip() else str(uuid.uuid1())
        artifact = create_new_artifact_event_and_attribution(
            store=self.store,
            execution_id=self.execution.id,
            context_id=self.child_context.id,
            uri=uri,
            name=url,
            type_name="Dataset",
            event_type=event_type,
            properties={
                "git_repo": str(git_repo),
                # passing c_hash value to commit
                "Commit": str(dataset_commit),
                "url": str(dvc_url_with_pipeline),
            },
            artifact_type_properties={
                "git_repo": mlpb.STRING,
                "Commit": mlpb.STRING,
                "url": mlpb.STRING,
            },
            custom_properties=custom_props,
            milliseconds_since_epoch=int(time.time() * 1000),
        )
    custom_props["git_repo"] = git_repo
    custom_props["Commit"] = dataset_commit
    self.execution_label_props["git_repo"] = git_repo
    self.execution_label_props["Commit"] = dataset_commit

    if self.graph:
        self.driver.create_dataset_node(
            name,
            url,
            uri,
            event,
            self.execution.id,
            self.parent_context,
            custom_props,
        )
        if event.lower() == "input":
            self.input_artifacts.append(
                {
                    "Name": name,
                    "Path": url,
                    "URI": uri,
                    "Event": event.lower(),
                    "Execution_Name": self.execution_name,
                    "Type": "Dataset",
                    "Execution_Command": self.execution_command,
                    "Pipeline_Id": self.parent_context.id,
                    "Pipeline_Name": self.parent_context.name,
                }
            )
            self.driver.create_execution_links(uri, name, "Dataset")
        else:
            child_artifact = {
                "Name": name,
                "Path": url,
                "URI": uri,
                "Event": event.lower(),
                "Execution_Name": self.execution_name,
                "Type": "Dataset",
                "Execution_Command": self.execution_command,
                "Pipeline_Id": self.parent_context.id,
                "Pipeline_Name": self.parent_context.name,
            }
            self.driver.create_artifact_relationships(
                self.input_artifacts, child_artifact, self.execution_label_props
            )
    os.chdir(logging_dir)
    return artifact

log_model(path, event, model_framework='Default', model_type='Default', model_name='Default', custom_properties=None)

Logs a model. The model is added to dvc and the metadata file (.dvc) gets committed to git. Example:

artifact: mlmd.proto.Artifact= cmf.log_model(
    path="path/to/model.pkl",
    event="output",
    model_framework="SKlearn",
    model_type="RandomForestClassifier",
    model_name="RandomForestClassifier:default"
)
Args: path: Path to the model file. event: Takes arguments INPUT OR OUTPUT. model_framework: Framework used to create the model. model_type: Type of model algorithm used. model_name: Name of the algorithm used. custom_properties: The model properties. Returns: Artifact object from ML Metadata library associated with the new model artifact.

Source code in cmflib/cmf.py
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
def log_model(
    self,
    path: str,
    event: str,
    model_framework: str = "Default",
    model_type: str = "Default",
    model_name: str = "Default",
    custom_properties: t.Optional[t.Dict] = None,
) -> mlpb.Artifact:
    """Logs a model.
    The model is added to dvc and the metadata file (.dvc) gets committed to git.
    Example:
        ```python
        artifact: mlmd.proto.Artifact= cmf.log_model(
            path="path/to/model.pkl",
            event="output",
            model_framework="SKlearn",
            model_type="RandomForestClassifier",
            model_name="RandomForestClassifier:default"
        )
        ```
    Args:
        path: Path to the model file.
        event: Takes arguments `INPUT` OR `OUTPUT`.
        model_framework: Framework used to create the model.
        model_type: Type of model algorithm used.
        model_name: Name of the algorithm used.
        custom_properties: The model properties.
    Returns:
        Artifact object from ML Metadata library associated with the new model artifact.
    """

    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    name_without_extension = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=name_without_extension)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # create execution if not already created
    if not self.execution:
        self.create_execution(execution_type=name_without_extension)
        assert self.execution is not None, f"Failed to create execution for {self.pipeline_name}!!"


    # To Do : Technical Debt. 
    # If the model already exist , then we just link the existing model to the execution
    # We do not update the model properties . 
    # We need to append the new properties to the existing model properties
    if custom_properties is None:
        custom_properties = {}
    custom_props = {} if custom_properties is None else custom_properties
    # name = re.split('/', path)[-1]
    event_type = mlpb.Event.Type.OUTPUT
    existing_artifact = []
    if event.lower() == "input":
        event_type = mlpb.Event.Type.INPUT

    commit_output(path, self.execution.id)
    c_hash = dvc_get_hash(path)

    if c_hash == "":
        print("Error in getting the dvc hash,return without logging")
        return

    model_commit = c_hash

    # If connecting to an existing artifact - The name of the artifact is
    # used as path/steps/key
    model_uri = path + ":" + c_hash
    dvc_url = dvc_get_url(path, False)
    url = dvc_url
    url_with_pipeline = f"{self.parent_context.name}:{url}"
    uri = ""
    if c_hash and c_hash.strip():
        uri = c_hash.strip()
        existing_artifact.extend(self.store.get_artifacts_by_uri(uri))
    else:
        raise RuntimeError("Model commit failed, Model uri empty")

    if (
        existing_artifact
        and len(existing_artifact) != 0
    ):
        # update url for existing artifact
        existing_artifact = self.update_model_url(
            existing_artifact, url_with_pipeline
        )
        artifact = link_execution_to_artifact(
            store=self.store,
            execution_id=self.execution.id,
            uri=c_hash,
            input_name=model_uri,
            event_type=event_type,
        )
        model_uri =  model_uri + ":" + str(self.execution.id)
    else:
        uri = c_hash if c_hash and c_hash.strip() else str(uuid.uuid1())
        model_uri = model_uri + ":" + str(self.execution.id)
        artifact = create_new_artifact_event_and_attribution(
            store=self.store,
            execution_id=self.execution.id,
            context_id=self.child_context.id,
            uri=uri,
            name=model_uri,
            type_name="Model",
            event_type=event_type,
            properties={
                "model_framework": str(model_framework),
                "model_type": str(model_type),
                "model_name": str(model_name),
                # passing c_hash value to commit
                "Commit": str(model_commit),
                "url": str(url_with_pipeline),
            },
            artifact_type_properties={
                "model_framework": mlpb.STRING,
                "model_type": mlpb.STRING,
                "model_name": mlpb.STRING,
                "Commit": mlpb.STRING,
                "url": mlpb.STRING,
            },
            custom_properties=custom_props,
            milliseconds_since_epoch=int(time.time() * 1000),
        )
    # custom_properties["Commit"] = model_commit
    self.execution_label_props["Commit"] = model_commit
    #To DO model nodes should be similar to dataset nodes when we create neo4j
    if self.graph:
        self.driver.create_model_node(
            model_uri,
            uri,
            event,
            self.execution.id,
            self.parent_context,
            custom_props,
        )
        if event.lower() == "input":
            self.input_artifacts.append(
                {
                    "Name": model_uri,
                    "URI": uri,
                    "Event": event.lower(),
                    "Execution_Name": self.execution_name,
                    "Type": "Model",
                    "Execution_Command": self.execution_command,
                    "Pipeline_Id": self.parent_context.id,
                    "Pipeline_Name": self.parent_context.name,
                }
            )
            self.driver.create_execution_links(uri, model_uri, "Model")
        else:
            child_artifact = {
                "Name": model_uri,
                "URI": uri,
                "Event": event.lower(),
                "Execution_Name": self.execution_name,
                "Type": "Model",
                "Execution_Command": self.execution_command,
                "Pipeline_Id": self.parent_context.id,
                "Pipeline_Name": self.parent_context.name,
            }

            self.driver.create_artifact_relationships(
                self.input_artifacts, child_artifact, self.execution_label_props
            )
    os.chdir(logging_dir)
    return artifact

log_execution_metrics(metrics_name, custom_properties=None)

Log the metadata associated with the execution (coarse-grained tracking). It is stored as a metrics artifact. This does not have a backing physical file, unlike other artifacts that we have. Example:

exec_metrics: mlpb.Artifact = cmf.log_execution_metrics(
    metrics_name="Training_Metrics",
    {"auc": auc, "loss": loss}
)
Args: metrics_name: Name to identify the metrics. custom_properties: Dictionary with metric values. Returns: Artifact object from ML Metadata library associated with the new coarse-grained metrics artifact.

Source code in cmflib/cmf.py
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
def log_execution_metrics(
    self, metrics_name: str, custom_properties: t.Optional[t.Dict] = None
) -> mlpb.Artifact:
    """Log the metadata associated with the execution (coarse-grained tracking).
    It is stored as a metrics artifact. This does not have a backing physical file, unlike other artifacts that we
    have.
    Example:
        ```python
        exec_metrics: mlpb.Artifact = cmf.log_execution_metrics(
            metrics_name="Training_Metrics",
            {"auc": auc, "loss": loss}
        )
        ```
    Args:
        metrics_name: Name to identify the metrics.
        custom_properties: Dictionary with metric values.
    Returns:
          Artifact object from ML Metadata library associated with the new coarse-grained metrics artifact.
    """
    logging_dir = change_dir(self.cmf_init_path)
    # Assigning current file name as stage and execution name
    current_script = sys.argv[0]
    file_name = os.path.basename(current_script)
    name_without_extension = os.path.splitext(file_name)[0]
    # create context if not already created
    if not self.child_context:
        self.create_context(pipeline_stage=name_without_extension)
        assert self.child_context is not None, f"Failed to create context for {self.pipeline_name}!!"

    # create execution if not already created
    if not self.execution:
        self.create_execution(execution_type=name_without_extension)
        assert self.execution is not None, f"Failed to create execution for {self.pipeline_name}!!"

    custom_props = {} if custom_properties is None else custom_properties
    uri = str(uuid.uuid1())
    metrics_name = metrics_name + ":" + uri + ":" + str(self.execution.id)
    metrics = create_new_artifact_event_and_attribution(
        store=self.store,
        execution_id=self.execution.id,
        context_id=self.child_context.id,
        uri=uri,
        name=metrics_name,
        type_name="Metrics",
        event_type=mlpb.Event.Type.OUTPUT,
        properties={"metrics_name": metrics_name},
        artifact_type_properties={"metrics_name": mlpb.STRING},
        custom_properties=custom_props,
        milliseconds_since_epoch=int(time.time() * 1000),
    )
    if self.graph:
        # To do create execution_links
        self.driver.create_metrics_node(
            metrics_name,
            uri,
            "output",
            self.execution.id,
            self.parent_context,
            custom_props,
        )
        child_artifact = {
            "Name": metrics_name,
            "URI": uri,
            "Event": "output",
            "Execution_Name": self.execution_name,
            "Type": "Metrics",
            "Execution_Command": self.execution_command,
            "Pipeline_Id": self.parent_context.id,
            "Pipeline_Name": self.parent_context.name,
        }
        self.driver.create_artifact_relationships(
            self.input_artifacts, child_artifact, self.execution_label_props
        )
    os.chdir(logging_dir)
    return metrics

log_metric(metrics_name, custom_properties=None)

Stores the fine-grained (per step or per epoch) metrics to memory. The metrics provided are stored in a parquet file. The commit_metrics call add the parquet file in the version control framework. The metrics written in the parquet file can be retrieved using the read_metrics call. Example:

# Can be called at every epoch or every step in the training. This is logged to a parquet file and committed
# at the commit stage.
# Inside training loop
while True:
     cmf.log_metric("training_metrics", {"train_loss": train_loss})
cmf.commit_metrics("training_metrics")
Args: metrics_name: Name to identify the metrics. custom_properties: Dictionary with metrics.

Source code in cmflib/cmf.py
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
def log_metric(
    self, metrics_name: str, custom_properties: t.Optional[t.Dict] = None
) -> None:
    """Stores the fine-grained (per step or per epoch) metrics to memory.
    The metrics provided are stored in a parquet file. The `commit_metrics` call add the parquet file in the version
    control framework. The metrics written in the parquet file can be retrieved using the `read_metrics` call.
    Example:
        ```python
        # Can be called at every epoch or every step in the training. This is logged to a parquet file and committed
        # at the commit stage.
        # Inside training loop
        while True:
             cmf.log_metric("training_metrics", {"train_loss": train_loss})
        cmf.commit_metrics("training_metrics")
        ```
    Args:
        metrics_name: Name to identify the metrics.
        custom_properties: Dictionary with metrics.
    """
    if metrics_name in self.metrics:
        key = max((self.metrics[metrics_name]).keys()) + 1
        self.metrics[metrics_name][key] = custom_properties
    else:
        self.metrics[metrics_name] = {}
        self.metrics[metrics_name][1] = custom_properties

create_dataslice(name)

Creates a dataslice object. Once created, users can add data instances to this data slice with add_data method. Users are also responsible for committing data slices by calling the commit method. Example:

dataslice = cmf.create_dataslice("slice-a")
Args: name: Name to identify the dataslice.

Returns:

Type Description
DataSlice

Instance of a newly created [DataSlice][cmflib.cmf.Cmf.DataSlice].

Source code in cmflib/cmf.py
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
def create_dataslice(self, name: str) -> "Cmf.DataSlice":
    """Creates a dataslice object.
    Once created, users can add data instances to this data slice with [add_data][cmflib.cmf.Cmf.DataSlice.add_data]
    method. Users are also responsible for committing data slices by calling the
    [commit][cmflib.cmf.Cmf.DataSlice.commit] method.
    Example:
        ```python
        dataslice = cmf.create_dataslice("slice-a")
        ```
    Args:
        name: Name to identify the dataslice.

    Returns:
        Instance of a newly created [DataSlice][cmflib.cmf.Cmf.DataSlice].
    """
    return Cmf.DataSlice(name, self)

update_dataslice(name, record, custom_properties)

Updates a dataslice record in a Parquet file with the provided custom properties. Example:

   dataslice=cmf.update_dataslice("dataslice_file.parquet", "record_id", 
   {"key1": "updated_value"})
Args: name: Name of the Parquet file. record: Identifier of the dataslice record to be updated. custom_properties: Dictionary containing custom properties to update.

Returns:

Type Description

None

Source code in cmflib/cmf.py
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
def update_dataslice(self, name: str, record: str, custom_properties: t.Dict):
    """Updates a dataslice record in a Parquet file with the provided custom properties.
    Example:
    ```python
       dataslice=cmf.update_dataslice("dataslice_file.parquet", "record_id", 
       {"key1": "updated_value"})
    ```
    Args:
       name: Name of the Parquet file.
       record: Identifier of the dataslice record to be updated.
       custom_properties: Dictionary containing custom properties to update.

    Returns:
       None
    """
    directory_path = os.path.join(self.ARTIFACTS_PATH, self.execution.properties["Execution_uuid"].string_value.split(',')[0], self.DATASLICE_PATH)
    name = os.path.join(directory_path, name)
    df = pd.read_parquet(name)
    temp_dict = df.to_dict("index")
    temp_dict[record].update(custom_properties)
    dataslice_df = pd.DataFrame.from_dict(temp_dict, orient="index")
    dataslice_df.index.names = ["Path"]
    dataslice_df.to_parquet(name)

This module contains all the public API for CMF

cmf_init_show()

Initializes and shows details of the CMF command. Example:

     result = cmf_init_show() 
Returns: Output from the _cmf_cmd_init function.

Source code in cmflib/cmf.py
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
def cmf_init_show():
    """ Initializes and shows details of the CMF command. 
    Example: 
    ```python 
         result = cmf_init_show() 
    ``` 
    Returns: 
       Output from the _cmf_cmd_init function. 
    """

    output=_cmf_cmd_init()
    return output

cmf_init(type='', path='', git_remote_url='', cmf_server_url='', neo4j_user='', neo4j_password='', neo4j_uri='', url='', endpoint_url='', access_key_id='', secret_key='', session_token='', user='', password='', port=0, osdf_path='', osdf_cache='', key_id='', key_path='', key_issuer='')

Initializes the CMF configuration based on the provided parameters. Example:

   cmf_init( type="local", 
             path="/path/to/re",
             git_remote_url="git@github.com:user/repo.git",
             cmf_server_url="http://cmf-server"
             neo4j_user", 
             neo4j_password="password",
             neo4j_uri="bolt://localhost:76"
           )
Args: type: Type of repository ("local", "minioS3", "amazonS3", "sshremote") path: Path for the local repository. git_remote_url: Git remote URL for version control. cmf_server_url: CMF server URL. neo4j_user: Neo4j database username. neo4j_password: Neo4j database password. neo4j_uri: Neo4j database URI. url: URL for MinioS3 or AmazonS3. endpoint_url: Endpoint URL for MinioS3. access_key_id: Access key ID for MinioS3 or AmazonS3. secret_key: Secret key for MinioS3 or AmazonS3. session_token: Session token for AmazonS3. user: SSH remote username. password: SSH remote password. port: SSH remote port. osdf_path: OSDF Origin Path. osdf_cache: OSDF Cache Path (Optional). key_id: OSDF Key ID. key_path: OSDF Private Key Path. key_issuer: OSDF Key Issuer URL. Returns: Output based on the initialized repository type.

Source code in cmflib/cmf.py
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
def cmf_init(type: str = "",
        path: str = "",
        git_remote_url: str = "",
        cmf_server_url: str = "",
        neo4j_user: str = "",
        neo4j_password: str = "",
        neo4j_uri: str = "",
        url: str = "",
        endpoint_url: str = "",
        access_key_id: str = "",
        secret_key: str = "",
        session_token: str = "",
        user: str = "",
        password: str = "",
        port: int = 0,
        osdf_path: str = "",
        osdf_cache: str = "",
        key_id: str = "",
        key_path: str = "",
        key_issuer: str = "",
         ):

    """ Initializes the CMF configuration based on the provided parameters. 
    Example:
    ```python
       cmf_init( type="local", 
                 path="/path/to/re",
                 git_remote_url="git@github.com:user/repo.git",
                 cmf_server_url="http://cmf-server"
                 neo4j_user", 
                 neo4j_password="password",
                 neo4j_uri="bolt://localhost:76"
               )
    ```
    Args: 
       type: Type of repository ("local", "minioS3", "amazonS3", "sshremote")
       path: Path for the local repository. 
       git_remote_url: Git remote URL for version control.
       cmf_server_url: CMF server URL.
       neo4j_user: Neo4j database username.
       neo4j_password: Neo4j database password.
       neo4j_uri: Neo4j database URI.
       url: URL for MinioS3 or AmazonS3.
       endpoint_url: Endpoint URL for MinioS3.
       access_key_id: Access key ID for MinioS3 or AmazonS3.
       secret_key: Secret key for MinioS3 or AmazonS3. 
       session_token: Session token for AmazonS3.
       user: SSH remote username.
       password: SSH remote password. 
       port: SSH remote port.
       osdf_path: OSDF Origin Path.
       osdf_cache: OSDF Cache Path (Optional).
       key_id: OSDF Key ID.
       key_path: OSDF Private Key Path.
       key_issuer: OSDF Key Issuer URL.
    Returns:
       Output based on the initialized repository type.
    """

    if type == "":
        return print("Error: Type is not provided")
    if type not in ["local","minioS3","amazonS3","sshremote","osdfremote"]:
        return print("Error: Type value is undefined"+ " "+type+".Expected: "+",".join(["local","minioS3","amazonS3","sshremote","osdfremote"]))

    if neo4j_user != "" and  neo4j_password != "" and neo4j_uri != "":
        pass
    elif neo4j_user == "" and  neo4j_password == "" and neo4j_uri == "":
        pass
    else:
        return print("Error: Enter all neo4j parameters.") 

    args={'path': path,
        'git_remote_url': git_remote_url,
        'url': url,
        'endpoint_url': endpoint_url,
        'access_key_id': access_key_id,
        'secret_key': secret_key,
        'session_token': session_token,
        'user': user,
        'password': password,
        'osdf_path': osdf_path,
        'osdf_cache': osdf_cache,
        'key_id': key_id,
        'key_path': key_path, 
        'key-issuer': key_issuer,
        }

    status_args=non_related_args(type, args)

    if type == "local" and path != "" and  git_remote_url != "" :
        """Initialize local repository"""
        output = _init_local(
            path, git_remote_url, cmf_server_url, neo4j_user, neo4j_password, neo4j_uri
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")
        return output

    elif type == "minioS3" and url != "" and endpoint_url != "" and access_key_id != "" and secret_key != "" and git_remote_url != "":
        """Initialize minioS3 repository"""
        output = _init_minioS3(
            url,
            endpoint_url,
            access_key_id,
            secret_key,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")
        return output

    elif type == "amazonS3" and url != "" and access_key_id != "" and secret_key != "" and git_remote_url != "":
        """Initialize amazonS3 repository"""
        output = _init_amazonS3(
            url,
            access_key_id,
            secret_key,
            session_token,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")

        return output

    elif type == "sshremote" and path != "" and user != "" and port != 0 and password != "" and git_remote_url != "":
        """Initialize sshremote repository"""
        output = _init_sshremote(
            path,
            user,
            port,
            password,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")

        return output

    elif type == "osdfremote" and osdf_path != "" and key_id != "" and key_path != "" and key_issuer != "" and git_remote_url != "":
        """Initialize osdfremote repository"""
        output = _init_osdfremote(
            osdf_path,
            osdf_cache,
            key_id,
            key_path,
            key_issuer,
            git_remote_url,
            cmf_server_url,
            neo4j_user,
            neo4j_password,
            neo4j_uri,
        )
        if status_args != []:
            print("There are non-related arguments: "+",".join(status_args)+".Please remove them.")

        return output

    else:
        print("Error: Enter all arguments")

metadata_push(pipeline_name, filepath='./mlmd', tensorboard_path='', execution_id='')

Pushes MLMD file to CMF-server. Example:

     result = metadata_push("example_pipeline", "mlmd_file", "3")
Args: pipeline_name: Name of the pipeline. filepath: Path to the MLMD file. execution_id: Optional execution ID. tensorboard_path: Path to tensorboard logs.

Returns:

Type Description

Response output from the _metadata_push function.

Source code in cmflib/cmf.py
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
def metadata_push(pipeline_name: str, filepath = "./mlmd", tensorboard_path: str = "", execution_id: str = ""):
    """ Pushes MLMD file to CMF-server.
    Example:
    ```python
         result = metadata_push("example_pipeline", "mlmd_file", "3")
    ```
    Args:
        pipeline_name: Name of the pipeline.
        filepath: Path to the MLMD file.
        execution_id: Optional execution ID.
        tensorboard_path: Path to tensorboard logs.

    Returns:
        Response output from the _metadata_push function.
    """
    # Required arguments:  pipeline_name
    # Optional arguments: Execution_ID, filepath (mlmd file path, tensorboard_path
    output = _metadata_push(pipeline_name, filepath, execution_id, tensorboard_path)
    return output

metadata_pull(pipeline_name, filepath='./mlmd', execution_id='')

Pulls MLMD file from CMF-server. Example:

     result = metadata_pull("example_pipeline", "./mlmd_directory", "execution_123") 
Args: pipeline_name: Name of the pipeline. filepath: File path to store the MLMD file. execution_id: Optional execution ID. Returns: Message from the _metadata_pull function.

Source code in cmflib/cmf.py
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
def metadata_pull(pipeline_name: str, filepath = "./mlmd", execution_id: str = ""):
    """ Pulls MLMD file from CMF-server. 
     Example: 
     ```python 
          result = metadata_pull("example_pipeline", "./mlmd_directory", "execution_123") 
     ``` 
     Args: 
        pipeline_name: Name of the pipeline. 
        filepath: File path to store the MLMD file. 
        execution_id: Optional execution ID. 
     Returns: 
        Message from the _metadata_pull function. 
     """
    # Required arguments:  pipeline_name 
    #Optional arguments: Execution_ID, filepath(file path to store mlmd file) 
    output = _metadata_pull(pipeline_name, filepath, execution_id)
    return output

artifact_pull(pipeline_name, filepath='./mlmd')

Pulls artifacts from the initialized repository.

Example:

     result = artifact_pull("example_pipeline", "./mlmd_directory")

Parameters:

Name Type Description Default
pipeline_name str

Name of the pipeline.

required
filepath

Path to store artifacts.

'./mlmd'

Returns: Output from the _artifact_pull function.

Source code in cmflib/cmf.py
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
def artifact_pull(pipeline_name: str, filepath = "./mlmd"):
    """ Pulls artifacts from the initialized repository.

    Example:
    ```python
         result = artifact_pull("example_pipeline", "./mlmd_directory")
    ```

    Args:
        pipeline_name: Name of the pipeline.
        filepath: Path to store artifacts.
    Returns:
        Output from the _artifact_pull function.
    """

    # Required arguments: Pipeline_name
    # Optional arguments: filepath( path to store artifacts)
    output = _artifact_pull(pipeline_name, filepath)
    return output

artifact_pull_single(pipeline_name, filepath, artifact_name)

Pulls a single artifact from the initialized repository. Example:

    result = artifact_pull_single("example_pipeline", "./mlmd_directory", "example_artifact") 
Args: pipeline_name: Name of the pipeline. filepath: Path to store the artifact. artifact_name: Name of the artifact. Returns: Output from the _artifact_pull_single function.

Source code in cmflib/cmf.py
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
def artifact_pull_single(pipeline_name: str, filepath: str, artifact_name: str):
    """ Pulls a single artifact from the initialized repository. 
    Example: 
    ```python 
        result = artifact_pull_single("example_pipeline", "./mlmd_directory", "example_artifact") 
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       filepath: Path to store the artifact. 
       artifact_name: Name of the artifact. 
    Returns:
       Output from the _artifact_pull_single function. 
    """

    # Required arguments: Pipeline_name
    # Optional arguments: filepath( path to store artifacts), artifact_name
    output = _artifact_pull_single(pipeline_name, filepath, artifact_name)
    return output

artifact_push(pipeline_name, filepath='./mlmd')

Pushes artifacts to the initialized repository.

Example:

     result = artifact_push("example_pipeline", "./mlmd_directory")
Args: pipeline_name: Name of the pipeline. filepath: Path to store the artifact. Returns: Output from the _artifact_push function.

Source code in cmflib/cmf.py
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
def artifact_push(pipeline_name: str, filepath = "./mlmd"):
    """ Pushes artifacts to the initialized repository.

    Example:
    ```python
         result = artifact_push("example_pipeline", "./mlmd_directory")
    ```
    Args: 
       pipeline_name: Name of the pipeline. 
       filepath: Path to store the artifact. 
    Returns:
        Output from the _artifact_push function.
    """

    output = _artifact_push(pipeline_name, filepath)
    return output